IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v60y2009i1d10.1057_jors.2008.169.html
   My bibliography  Save this article

A tutorial in irregular shape packing problems

Author

Listed:
  • J A Bennell

    (University of Southampton)

  • J F Oliveira

    (Universidade do Porto)

Abstract

Cutting and packing problems have been a core area of research for many decades. Irregular shape packing is one of the most recent variants to be widely researched and its history extends over 40 years. The evolution of solution approaches to this problem can be attributed to increased computer power and advances in geometric techniques as well as more sophisticated and insightful algorithm design. In this paper we will focus on the latter. Our aim is not to give a chronological account or an exhaustive review, but to draw on the literature to describe and evaluate the core approaches. Irregular packing is combinatorial and as a result solution methods are heuristic, save a few notable exceptions. We will explore different ways of representing the problem and mechanisms for moving between solutions. We will also propose where we see the future challenges for researchers in this area.

Suggested Citation

  • J A Bennell & J F Oliveira, 2009. "A tutorial in irregular shape packing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 93-105, May.
  • Handle: RePEc:pal:jorsoc:v:60:y:2009:i:1:d:10.1057_jors.2008.169
    DOI: 10.1057/jors.2008.169
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2008.169
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2008.169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burke, E.K. & Hellier, R.S.R. & Kendall, G. & Whitwell, G., 2007. "Complete and robust no-fit polygon generation for the irregular stock cutting problem," European Journal of Operational Research, Elsevier, vol. 179(1), pages 27-49, May.
    2. Egeblad, Jens & Nielsen, Benny K. & Odgaard, Allan, 2007. "Fast neighborhood search for two- and three-dimensional nesting problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1249-1266, December.
    3. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    4. Bennell, Julia A. & Oliveira, Jose F., 2008. "The geometry of nesting problems: A tutorial," European Journal of Operational Research, Elsevier, vol. 184(2), pages 397-415, January.
    5. Edmund Burke & Robert Hellier & Graham Kendall & Glenn Whitwell, 2006. "A New Bottom-Left-Fill Heuristic Algorithm for the Two-Dimensional Irregular Packing Problem," Operations Research, INFORMS, vol. 54(3), pages 587-601, June.
    6. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    7. Jakobs, Stefan, 1996. "On genetic algorithms for the packing of polygons," European Journal of Operational Research, Elsevier, vol. 88(1), pages 165-181, January.
    8. Stoyan, Yu. G. & Novozhilova, M. V. & Kartashov, A. V., 1996. "Mathematical model and method of searching for a local extremum for the non-convex oriented polygons allocation problem," European Journal of Operational Research, Elsevier, vol. 92(1), pages 193-210, July.
    9. Gomes, A. Miguel & Oliveira, Jose F., 2006. "Solving Irregular Strip Packing problems by hybridising simulated annealing and linear programming," European Journal of Operational Research, Elsevier, vol. 171(3), pages 811-829, June.
    10. Dowsland, Kathryn A. & Vaid, Subodh & Dowsland, William B., 2002. "An algorithm for polygon placement using a bottom-left strategy," European Journal of Operational Research, Elsevier, vol. 141(2), pages 371-381, September.
    11. Gomes, A. Miguel & Oliveira, Jose F., 2002. "A 2-exchange heuristic for nesting problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 359-370, September.
    12. Julia A. Bennell & Kathryn A. Dowsland, 2001. "Hybridising Tabu Search with Optimisation Techniques for Irregular Stock Cutting," Management Science, INFORMS, vol. 47(8), pages 1160-1172, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    2. Kimms, Alf & Király, Hédi, 2023. "An extended model formulation for the two-dimensional irregular strip packing problem considering general industry-relevant aspects," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1202-1218.
    3. Bennell, J.A. & Cabo, M. & Martínez-Sykora, A., 2018. "A beam search approach to solve the convex irregular bin packing problem with guillotine guts," European Journal of Operational Research, Elsevier, vol. 270(1), pages 89-102.
    4. Toledo, Franklina M.B. & Carravilla, Maria Antónia & Ribeiro, Cristina & Oliveira, José F. & Gomes, A. Miguel, 2013. "The Dotted-Board Model: A new MIP model for nesting irregular shapes," International Journal of Production Economics, Elsevier, vol. 145(2), pages 478-487.
    5. Sato, André Kubagawa & Martins, Thiago Castro & Gomes, Antonio Miguel & Tsuzuki, Marcos Sales Guerra, 2019. "Raster penetration map applied to the irregular packing problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 657-671.
    6. Eunice López-Camacho & Gabriela Ochoa & Hugo Terashima-Marín & Edmund Burke, 2013. "An effective heuristic for the two-dimensional irregular bin packing problem," Annals of Operations Research, Springer, vol. 206(1), pages 241-264, July.
    7. Martinez-Sykora, A. & Alvarez-Valdes, R. & Bennell, J.A. & Ruiz, R. & Tamarit, J.M., 2017. "Matheuristics for the irregular bin packing problem with free rotations," European Journal of Operational Research, Elsevier, vol. 258(2), pages 440-455.
    8. Umetani, Shunji & Murakami, Shohei, 2022. "Coordinate descent heuristics for the irregular strip packing problem of rasterized shapes," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1009-1026.
    9. Josef Kallrath & Tatiana Romanova & Alexander Pankratov & Igor Litvinchev & Luis Infante, 2023. "Packing convex polygons in minimum-perimeter convex hulls," Journal of Global Optimization, Springer, vol. 85(1), pages 39-59, January.
    10. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2022. "A cutting plane method and a parallel algorithm for packing rectangles in a circular container," European Journal of Operational Research, Elsevier, vol. 303(1), pages 114-128.
    11. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    12. Jie Fang & Yunqing Rao & Xusheng Zhao & Bing Du, 2023. "A Hybrid Reinforcement Learning Algorithm for 2D Irregular Packing Problems," Mathematics, MDPI, vol. 11(2), pages 1-17, January.
    13. Cherri, Luiz Henrique & Carravilla, Maria Antónia & Ribeiro, Cristina & Toledo, Franklina Maria Bragion, 2019. "Optimality in nesting problems: New constraint programming models and a new global constraint for non-overlap," Operations Research Perspectives, Elsevier, vol. 6(C).
    14. Yainier Labrada-Nueva & Martin H. Cruz-Rosales & Juan Manuel Rendón-Mancha & Rafael Rivera-López & Marta Lilia Eraña-Díaz & Marco Antonio Cruz-Chávez, 2021. "Overlap Detection in 2D Amorphous Shapes for Paper Optimization in Digital Printing Presses," Mathematics, MDPI, vol. 9(9), pages 1-22, May.
    15. Donald Jones, 2014. "A fully general, exact algorithm for nesting irregular shapes," Journal of Global Optimization, Springer, vol. 59(2), pages 367-404, July.
    16. Elkeran, Ahmed, 2013. "A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering," European Journal of Operational Research, Elsevier, vol. 231(3), pages 757-769.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Santoro & Felipe Lemos, 2015. "Irregular packing: MILP model based on a polygonal enclosure," Annals of Operations Research, Springer, vol. 235(1), pages 693-707, December.
    2. Umetani, Shunji & Murakami, Shohei, 2022. "Coordinate descent heuristics for the irregular strip packing problem of rasterized shapes," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1009-1026.
    3. Elkeran, Ahmed, 2013. "A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering," European Journal of Operational Research, Elsevier, vol. 231(3), pages 757-769.
    4. Eunice López-Camacho & Gabriela Ochoa & Hugo Terashima-Marín & Edmund Burke, 2013. "An effective heuristic for the two-dimensional irregular bin packing problem," Annals of Operations Research, Springer, vol. 206(1), pages 241-264, July.
    5. Toledo, Franklina M.B. & Carravilla, Maria Antónia & Ribeiro, Cristina & Oliveira, José F. & Gomes, A. Miguel, 2013. "The Dotted-Board Model: A new MIP model for nesting irregular shapes," International Journal of Production Economics, Elsevier, vol. 145(2), pages 478-487.
    6. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    7. Alvarez-Valdes, R. & Martinez, A. & Tamarit, J.M., 2013. "A branch & bound algorithm for cutting and packing irregularly shaped pieces," International Journal of Production Economics, Elsevier, vol. 145(2), pages 463-477.
    8. Chehrazad, Sahar & Roose, Dirk & Wauters, Tony, 2022. "A fast and scalable bottom-left-fill algorithm to solve nesting problems using a semi-discrete representation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 809-826.
    9. Igor Kierkosz & Maciej Łuczak, 2019. "A one-pass heuristic for nesting problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(1), pages 37-60.
    10. Sato, André Kubagawa & Martins, Thiago Castro & Gomes, Antonio Miguel & Tsuzuki, Marcos Sales Guerra, 2019. "Raster penetration map applied to the irregular packing problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 657-671.
    11. E. K. Burke & R. S. R. Hellier & G. Kendall & G. Whitwell, 2010. "Irregular Packing Using the Line and Arc No-Fit Polygon," Operations Research, INFORMS, vol. 58(4-part-1), pages 948-970, August.
    12. Egeblad, Jens & Nielsen, Benny K. & Odgaard, Allan, 2007. "Fast neighborhood search for two- and three-dimensional nesting problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1249-1266, December.
    13. Akang Wang & Christopher L. Hanselman & Chrysanthos E. Gounaris, 2018. "A customized branch-and-bound approach for irregular shape nesting," Journal of Global Optimization, Springer, vol. 71(4), pages 935-955, August.
    14. Yu, M.T. & Lin, T.Y. & Hung, C., 2009. "Active-set sequential quadratic programming method with compact neighbourhood algorithm for the multi-polygon mass production cutting-stock problem with rotatable polygons," International Journal of Production Economics, Elsevier, vol. 121(1), pages 148-161, September.
    15. Edmund K. Burke & Graham Kendall & Glenn Whitwell, 2009. "A Simulated Annealing Enhancement of the Best-Fit Heuristic for the Orthogonal Stock-Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 505-516, August.
    16. Cherri, Luiz H. & Mundim, Leandro R. & Andretta, Marina & Toledo, Franklina M.B. & Oliveira, José F. & Carravilla, Maria Antónia, 2016. "Robust mixed-integer linear programming models for the irregular strip packing problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 570-583.
    17. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    18. H. Terashima-Marín & P. Ross & C. Farías-Zárate & E. López-Camacho & M. Valenzuela-Rendón, 2010. "Generalized hyper-heuristics for solving 2D Regular and Irregular Packing Problems," Annals of Operations Research, Springer, vol. 179(1), pages 369-392, September.
    19. Juan Lu & Chengyi Ou & Chen Liao & Zhenkun Zhang & Kai Chen & Xiaoping Liao, 2021. "Formal modelling of a sheet metal smart manufacturing system by using Petri nets and first-order predicate logic," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1043-1063, April.
    20. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:60:y:2009:i:1:d:10.1057_jors.2008.169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.