IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v58y2007i7d10.1057_palgrave.jors.2602199.html
   My bibliography  Save this article

Operations policy for a supply chain system with fixed-interval delivery and linear demand

Author

Listed:
  • A Diponegoro

    (Louisiana State University)

  • B R Sarker

    (Louisiana State University)

Abstract

This research addresses a production-supply problem for a supply-chain system with fixed-interval delivery. A strategy that determines the optimal batch sizes, cycle times, numbers of orders of raw materials, and production start times is prescribed to minimize the total costs for a given finite planning horizon. The external demands are time-dependent following a life-cycle pattern and the shipment quantities follow the demand pattern. The shipment quantities to buyers follow various phases of the demand pattern in the planning horizon where demand is represented by piecewise linear model. The problem is formulated as an integer, non-linear programming problem. The model also incorporates the constraint of inventory capacity. The problem is represented using the network model where an optimal characteristic has been analysed. To obtain an optimal solution with N shipments in a planning horizon, an algorithm is proposed that runs with the complexity of Θ(N2) for problems with a single-phase demand and O(N3) for problems with multi-phase demand.

Suggested Citation

  • A Diponegoro & B R Sarker, 2007. "Operations policy for a supply chain system with fixed-interval delivery and linear demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 901-910, July.
  • Handle: RePEc:pal:jorsoc:v:58:y:2007:i:7:d:10.1057_palgrave.jors.2602199
    DOI: 10.1057/palgrave.jors.2602199
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602199
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert L. Smith & Rachel Q. Zhang, 1998. "Infinite Horizon Production Planning in Time-Varying Systems with Convex Production and Inventory Costs," Management Science, INFORMS, vol. 44(9), pages 1313-1320, September.
    2. Balkhi, Zaid T., 1999. "On the global optimal solution to an integrated inventory system with general time varying demand, production and deterioration rates," European Journal of Operational Research, Elsevier, vol. 114(1), pages 29-37, April.
    3. Sarker, Bhaba R. & Parija, Gyana R., 1996. "Optimal batch size and raw material ordering policy for a production system with a fixed-interval, lumpy demand delivery system," European Journal of Operational Research, Elsevier, vol. 89(3), pages 593-608, March.
    4. Diponegoro, Ahmad & Sarker, Bhaba R., 2002. "Determining manufacturing batch sizes for a lumpy delivery system with trend demand," International Journal of Production Economics, Elsevier, vol. 77(2), pages 131-143, May.
    5. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarker, Bhaba R. & Diponegoro, Ahmad, 2009. "Optimal production plans and shipment schedules in a supply-chain system with multiple suppliers and multiple buyers," European Journal of Operational Research, Elsevier, vol. 194(3), pages 753-773, May.
    2. Tamás Bányai & Béla Illés & Miklós Gubán & Ákos Gubán & Fabian Schenk & Ágota Bányai, 2019. "Optimization of Just-In-Sequence Supply: A Flower Pollination Algorithm-Based Approach," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    3. Wu, Kan & Yuan, Xue-Ming, 2016. "Optimal production-inventory policy for an integrated multi-stage supply chain with time-varying demandAuthor-Name: Zhao, Shi Tao," European Journal of Operational Research, Elsevier, vol. 255(2), pages 364-379.
    4. Warburton, Roger D.H. & Hodgson, J.P.E. & Nielsen, E.H., 2014. "Exact solutions to the supply chain equations for arbitrary, time-dependent demands," International Journal of Production Economics, Elsevier, vol. 151(C), pages 195-205.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarker, Bhaba R. & Diponegoro, Ahmad, 2009. "Optimal production plans and shipment schedules in a supply-chain system with multiple suppliers and multiple buyers," European Journal of Operational Research, Elsevier, vol. 194(3), pages 753-773, May.
    2. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    3. Rahman, Mohammad Anwar Ashek & Sarker, Bhaba R., 2007. "Supply chain models for an assembly system with preprocessing of raw materials," European Journal of Operational Research, Elsevier, vol. 181(2), pages 733-752, September.
    4. Archis Ghate & Robert L. Smith, 2009. "Optimal Backlogging Over an Infinite Horizon Under Time-Varying Convex Production and Inventory Costs," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 362-368, June.
    5. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    6. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    7. Toy, Ayhan Özgür & Berk, Emre, 2013. "Dynamic lot sizing for a warm/cold process: Heuristics and insights," International Journal of Production Economics, Elsevier, vol. 145(1), pages 53-66.
    8. Hark‐Chin Hwang & Wilco van den Heuvel, 2012. "Improved algorithms for a lot‐sizing problem with inventory bounds and backlogging," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 244-253, April.
    9. Karla E. Bourland & Candace Arai Yano, 1996. "Lot sizing when yields increase during the production run," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(8), pages 1035-1047, December.
    10. Martel, Alain & Gascon, Andre, 1998. "Dynamic lot-sizing with price changes and price-dependent holding costs," European Journal of Operational Research, Elsevier, vol. 111(1), pages 114-128, November.
    11. Atamturk, Alper & Munoz, Juan Carlos, 2002. "A Study of the Lot-Sizing Polytope," University of California Transportation Center, Working Papers qt6zz2g0z4, University of California Transportation Center.
    12. Rita Vachani, 1992. "Performance of heuristics for the uncapacitated lot‐size problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(6), pages 801-813, October.
    13. Vernon Ning Hsu, 2000. "Dynamic Economic Lot Size Model with Perishable Inventory," Management Science, INFORMS, vol. 46(8), pages 1159-1169, August.
    14. Herbert Meyr & Mirko Kiel, 2022. "Minimizing setups and waste when printing labels of consumer goods," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 733-761, September.
    15. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    16. Hark‐Chin Hwang, 2007. "Dynamic lot‐sizing model with production time windows," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 692-701, September.
    17. Piñeyro, Pedro & Viera, Omar, 2010. "The economic lot-sizing problem with remanufacturing and one-way substitution," International Journal of Production Economics, Elsevier, vol. 124(2), pages 482-488, April.
    18. Sarker, Bhaba R. & Coates, Eyler Robert, 1997. "Manufacturing setup cost reduction under variable lead times and finite opportunities for investment," International Journal of Production Economics, Elsevier, vol. 49(3), pages 237-247, May.
    19. Hark-Chin Hwang, 2010. "Economic Lot-Sizing for Integrated Production and Transportation," Operations Research, INFORMS, vol. 58(2), pages 428-444, April.
    20. Sarker, Bhaba R., 2014. "Consignment stocking policy models for supply chain systems: A critical review and comparative perspectives," International Journal of Production Economics, Elsevier, vol. 155(C), pages 52-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:58:y:2007:i:7:d:10.1057_palgrave.jors.2602199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.