IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v58y2007i3d10.1057_palgrave.jors.2602151.html
   My bibliography  Save this article

Locating semi-obnoxious facilities with expropriation: minisum criterion

Author

Listed:
  • O Berman

    (University of Toronto)

  • Q Wang

    (Graduate University of Chinese Academy of Sciences)

Abstract

This paper considers the problem of locating semi-obnoxious facilities assuming that demand points within a certain distance from an open facility are expropriated at a given price. The objective is to locate the facilities so as to minimize the total weighted transportation cost and expropriation cost. Models are developed for both single and multiple facilities. For the case of locating a single facility, finite dominating sets are determined for the problems on a plane and on a network. An efficient algorithm is developed for the problem on a network. For the case of locating multiple facilities, a branch-and-bound procedure using Lagrangian relaxation is proposed and its efficiency is tested with computational experiments.

Suggested Citation

  • O Berman & Q Wang, 2007. "Locating semi-obnoxious facilities with expropriation: minisum criterion," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 378-390, March.
  • Handle: RePEc:pal:jorsoc:v:58:y:2007:i:3:d:10.1057_palgrave.jors.2602151
    DOI: 10.1057/palgrave.jors.2602151
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602151
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. CORNUEJOLS, Gérard & FISHER, Marshall L. & NEMHAUSER, George L., 1977. "Location of bank accounts to optimize float: An analytic study of exact and approximate algorithms," LIDAM Reprints CORE 292, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. O Berman & Z Drezner & G O Wesolowsky, 2003. "The expropriation location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(7), pages 769-776, July.
    3. Erkut, Erhan & Neuman, Susan, 1989. "Analytical models for locating undesirable facilities," European Journal of Operational Research, Elsevier, vol. 40(3), pages 275-291, June.
    4. Richard L. Church & Robert S. Garfinkel, 1978. "Locating an Obnoxious Facility on a Network," Transportation Science, INFORMS, vol. 12(2), pages 107-118, May.
    5. Brimberg, Jack & Juel, Henrik, 1998. "A bicriteria model for locating a semi-desirable facility in the plane," European Journal of Operational Research, Elsevier, vol. 106(1), pages 144-151, April.
    6. Gerard Cornuejols & Marshall L. Fisher & George L. Nemhauser, 1977. "Exceptional Paper--Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms," Management Science, INFORMS, vol. 23(8), pages 789-810, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. R. Francis & T. Lowe & M. Rayco & A. Tamir, 2009. "Aggregation error for location models: survey and analysis," Annals of Operations Research, Springer, vol. 167(1), pages 171-208, March.
    3. Karatas, Mumtaz & Eriskin, Levent, 2021. "The minimal covering location and sizing problem in the presence of gradual cooperative coverage," European Journal of Operational Research, Elsevier, vol. 295(3), pages 838-856.
    4. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    5. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    6. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    7. Heidari, Mehdi & Asadpour, Masoud & Faili, Hesham, 2015. "SMG: Fast scalable greedy algorithm for influence maximization in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 124-133.
    8. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    9. Alberto Ceselli & Federico Liberatore & Giovanni Righini, 2009. "A computational evaluation of a general branch-and-price framework for capacitated network location problems," Annals of Operations Research, Springer, vol. 167(1), pages 209-251, March.
    10. Righini, Giovanni, 1995. "A double annealing algorithm for discrete location/allocation problems," European Journal of Operational Research, Elsevier, vol. 86(3), pages 452-468, November.
    11. Zohreh Hosseini Nodeh & Ali Babapour Azar & Rashed Khanjani Shiraz & Salman Khodayifar & Panos M. Pardalos, 2020. "Joint chance constrained shortest path problem with Copula theory," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 110-140, July.
    12. Rolland, Erik & Schilling, David A. & Current, John R., 1997. "An efficient tabu search procedure for the p-Median Problem," European Journal of Operational Research, Elsevier, vol. 96(2), pages 329-342, January.
    13. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    14. Joshua Q. Hale & Enlu Zhou & Jiming Peng, 2017. "A Lagrangian search method for the P-median problem," Journal of Global Optimization, Springer, vol. 69(1), pages 137-156, September.
    15. Hauser, John R. & Urban, Glen L. & Weinberg, Bruce D., 1992. "Time flies when you're having fun : how consumers allocate their time when evaluating products," Working papers 3439-92., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    16. P B Mirchandani & A Oudjit, 1982. "Probabilistic Demands and Costs in Facility Location Problems," Environment and Planning A, , vol. 14(7), pages 917-932, July.
    17. Sharma, R.R.K. & Berry, V., 2007. "Developing new formulations and relaxations of single stage capacitated warehouse location problem (SSCWLP): Empirical investigation for assessing relative strengths and computational effort," European Journal of Operational Research, Elsevier, vol. 177(2), pages 803-812, March.
    18. Skriver, Anders J. V. & Andersen, Kim Allan, 2003. "The bicriterion semi-obnoxious location (BSL) problem solved by an [epsilon]-approximation," European Journal of Operational Research, Elsevier, vol. 146(3), pages 517-528, May.
    19. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.
    20. A.A. Ageev & M.I. Sviridenko, 2004. "Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 307-328, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:58:y:2007:i:3:d:10.1057_palgrave.jors.2602151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.