IDEAS home Printed from https://ideas.repec.org/a/oup/indcch/v17y2008i3p485-497.html
   My bibliography  Save this article

Factors affecting the power of technological paradigms

Author

Listed:
  • Richard R. Nelson

Abstract

It is clear that the power of “technological paradigms” proposed by Dosi ( 1982 ) varies greatly across fields of practice, in the sense that in certain field's progress has been much more rapid than in others where comparable resources have been applied to the effort. This essay explores the factors behind these differences. It proposes that one important factor is the extent to which the technology in a field is controllable and replicable. Another factor is the strength of the supporting sciences. It is argued that these factors are strongly intertwined with the causal arrows going both ways. Copyright 2008 , Oxford University Press.

Suggested Citation

  • Richard R. Nelson, 2008. "Factors affecting the power of technological paradigms," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(3), pages 485-497, June.
  • Handle: RePEc:oup:indcch:v:17:y:2008:i:3:p:485-497
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/icc/dtn010
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ugo Finardi, 2013. "The technological paradigm of Nanosciences and Technologies: a study of science-technology time and space relations," Economía: teoría y práctica, Universidad Autónoma Metropolitana, México, vol. 39(2), pages 11-29, Julio-Dic.
    2. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
    3. Thomas Grebel, 2011. "Innovation and Health," Books, Edward Elgar Publishing, number 14375.
    4. Beniamino Callegari & Christophe Feder, 2022. "The long-term economic effects of pandemics: toward an evolutionary approach [Epidemics and trust: the case of the Spanish flu]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(3), pages 715-735.
    5. Coccia, Mario, 2015. "General sources of general purpose technologies in complex societies: Theory of global leadership-driven innovation, warfare and human development," Technology in Society, Elsevier, vol. 42(C), pages 199-226.
    6. Ester Ferrari & Luigi Bollani & Mario Coccia & Eugenio Cavallo, 2013. "Technological Innovations in Agricultural Tractors: Adopters’ behaviour towards new technological trajectories and future directions," CERIS Working Paper 201305, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    7. Blandinieres, Florence, 2019. "Anatomy of the medical innovation process: What are the consequences of replicability issues on innovation?," ZEW Discussion Papers 19-011, ZEW - Leibniz Centre for European Economic Research.
    8. Smith, Adrian & Voß, Jan-Peter & Grin, John, 2010. "Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges," Research Policy, Elsevier, vol. 39(4), pages 435-448, May.
    9. Suenaga, Keiichiro, 2019. "The emergence of technological paradigms: The case of heat engines," Technology in Society, Elsevier, vol. 57(C), pages 135-141.
    10. Yaqub, Ohid & Nightingale, Paul, 2012. "Vaccine innovation, translational research and the management of knowledge accumulation," Social Science & Medicine, Elsevier, vol. 75(12), pages 2143-2150.
    11. Nelson, John P., 2023. "Differential “progressibility” in human know-how: A conceptual overview," Research Policy, Elsevier, vol. 52(2).
    12. Ohid Yaqub, 2018. "Variation in the dynamics and performance of industrial innovation: what can we learn from vaccines and HIV vaccines?," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(1), pages 173-187.
    13. Mario Coccia & Ugo Finardi, 2013. "Evolutionary growth of knowledge and new technological directions of non-thermal plasma technology in medicine," CERIS Working Paper 201302, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    14. Coccia, Mario, 2012. "Driving forces of technological change in medicine: Radical innovations induced by side effects and their impact on society and healthcare," Technology in Society, Elsevier, vol. 34(4), pages 271-283.
    15. Grebel, Thomas, 2009. "Technological change: A microeconomic approach to the creation of knowledge," Structural Change and Economic Dynamics, Elsevier, vol. 20(4), pages 301-312, December.
    16. Yaqub, Ohid, 2017. "Testing regimes in clinical trials: Evidence from four polio vaccine trajectories," Research Policy, Elsevier, vol. 46(2), pages 475-484.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:indcch:v:17:y:2008:i:3:p:485-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/icc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.