IDEAS home Printed from https://ideas.repec.org/a/oup/crimin/v63y2023i4p867-888..html
   My bibliography  Save this article

The Structure of Trade-type and Governance-type Organized Crime Groups: A Network Study

Author

Listed:
  • Niles Breuer
  • Federico Varese

Abstract

The paper provides a theoretical framework for categorizing organized crime groups based on what they do – whether they produce, trade or govern – as well as their aims. This paper then tests whether the internal structure of a heroin distribution organization in New York City, a Sicilian mafia group and the Provisional Irish Republican Army differ. Applying Exponential Random Graph Models (ERGMs) methods to network data, we find the organizational structure of trade-type organized crime differs markedly from governance-type, as well as between financially-motivated and politically-motivated groups. Trade-type organized crime and financially-motivated groups display a high level of centralization, an even distribution of clustering values, short paths and low homophily. Governance-type organized crime and politically-motivated groups display the opposite features. We conclude that the core activity and aim of the group are crucial in understanding the organizational structure.

Suggested Citation

  • Niles Breuer & Federico Varese, 2023. "The Structure of Trade-type and Governance-type Organized Crime Groups: A Network Study," The British Journal of Criminology, Centre for Crime and Justice Studies, vol. 63(4), pages 867-888.
  • Handle: RePEc:oup:crimin:v:63:y:2023:i:4:p:867-888.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/bjc/azac065
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunter, David R. & Handcock, Mark S. & Butts, Carter T. & Goodreau, Steven M. & Morris, Martina, 2008. "ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i03).
    2. Paul Gill & Jeongyoon Lee & Karl R. Rethemeyer & John Horgan & Victor Asal, 2014. "Lethal Connections: The Determinants of Network Connections in the Provisional Irish Republican Army, 1970--1998," International Interactions, Taylor & Francis Journals, vol. 40(1), pages 52-78, January.
    3. Lucia Cavallaro & Annamaria Ficara & Pasquale De Meo & Giacomo Fiumara & Salvatore Catanese & Ovidiu Bagdasar & Wei Song & Antonio Liotta, 2020. "Disrupting resilient criminal networks through data analysis: The case of Sicilian Mafia," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moeliono, Moira & Brockhaus, Maria & Gallemore, Caleb & Dwisatrio, Bimo & Maharani, Cynthia D. & Muharrom, Efrian & Pham, Thuy Thu, 2020. "REDD+ in Indonesia: A new mode of governance or just another project?," Forest Policy and Economics, Elsevier, vol. 121(C).
    2. Bender-deMol, Skye & Morris, Martina & Moody, James, 2008. "Prototype Packages for Managing and Animating Longitudinal Network Data: dynamicnetwork and rSoNIA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i07).
    3. Darko Cherepnalkoski & Andreas Karpf & Igor Mozetič & Miha Grčar, 2016. "Cohesion and Coalition Formation in the European Parliament: Roll-Call Votes and Twitter Activities," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-27, November.
    4. Youyi Bi & Yunjian Qiu & Zhenghui Sha & Mingxian Wang & Yan Fu & Noshir Contractor & Wei Chen, 2021. "Modeling Multi-Year Customers’ Considerations and Choices in China’s Auto Market Using Two-Stage Bipartite Network Analysis," Networks and Spatial Economics, Springer, vol. 21(2), pages 365-385, June.
    5. Neal, Zachary & Domagalski, Rachel & Yan, Xiaoqin, 2020. "Party Control as a Context for Homophily in Collaborations among US House Representatives, 1981 -- 2015," OSF Preprints qwdxs, Center for Open Science.
    6. Prochnow, Tyler & Patterson, Megan S. & Hartnell, Logan & West, Geoffrey & Umstattd Meyer, M. Renée, 2021. "Implications of race and ethnicity for child physical activity and social connections at summer care programs," Children and Youth Services Review, Elsevier, vol. 127(C).
    7. Krivitsky, Pavel N., 2017. "Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 149-161.
    8. Ge, Erhao & Cairang, Dongzhi & Mace, Ruth, 2022. "Religiosity structures social networks in a Tibetan population," OSF Preprints qpa4b, Center for Open Science.
    9. Cody J. Dey & James S. Quinn, 2014. "Individual attributes and self-organizational processes affect dominance network structure in pukeko," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(6), pages 1402-1408.
    10. Parra, Diana C. & Dauti, Marsela & Harris, Jenine K. & Reyes, Lissette & Malta, Deborah C. & Brownson, Ross C. & Quintero, Mario A. & Pratt, Michael, 2011. "How does network structure affect partnerships for promoting physical activity? Evidence from Brazil and Colombia," Social Science & Medicine, Elsevier, vol. 73(9), pages 1365-1370.
    11. Ma, Ding & Yu, Qian & Li, Jing & Ge, Mengni, 2021. "Innovation diffusion enabler or barrier: An investigation of international patenting based on temporal exponential random graph models," Technology in Society, Elsevier, vol. 64(C).
    12. Ladan Ghahramani & Jalayer Khalilzadeh & Birendra KC, 2018. "Tour guides’ communication ecosystems: an inferential social network analysis approach," Information Technology & Tourism, Springer, vol. 20(1), pages 103-130, December.
    13. Lyubchich, Vyacheslav & Woodland, Ryan J., 2019. "Using isotope composition and other node attributes to predict edges in fish trophic networks," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 63-68.
    14. Milad Abbasiharofteh & Tom Broekel, 2021. "Still in the shadow of the wall? The case of the Berlin biotechnology cluster," Environment and Planning A, , vol. 53(1), pages 73-94, February.
    15. Changwei Yuan & Jinrui Zhu & Shuai Zhang & Jiannan Zhao & Shibo Zhu, 2024. "Analysis of the Spatial Correlation Network and Driving Mechanism of China’s Transportation Carbon Emission Intensity," Sustainability, MDPI, vol. 16(7), pages 1-23, April.
    16. Nunes, Matthew, 2015. "Statistical Analysis of Network Data with R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(b01).
    17. Nolan E. Phillips & Brian L. Levy & Robert J. Sampson & Mario L. Small & Ryan Q. Wang, 2021. "The Social Integration of American Cities: Network Measures of Connectedness Based on Everyday Mobility Across Neighborhoods," Sociological Methods & Research, , vol. 50(3), pages 1110-1149, August.
    18. Goodreau, Steven M. & Handcock, Mark S. & Hunter, David R. & Butts, Carter T. & Morris, Martina, 2008. "A statnet Tutorial," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i09).
    19. Angel Ortiz-Pelaez & Getaneh Ashenafi & Francois Roger & Agnes Waret-Szkuta, 2012. "Can Geographical Factors Determine the Choices of Farmers in the Ethiopian Highlands to Trade in Livestock Markets?," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    20. Lasse Folke Henriksen & Stefano Ponte, 2018. "Public orchestration, social networks, and transnational environmental governance: Lessons from the aviation industry," Regulation & Governance, John Wiley & Sons, vol. 12(1), pages 23-45, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:crimin:v:63:y:2023:i:4:p:867-888.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/bjc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.