IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v97y2010i3p539-550.html
   My bibliography  Save this article

A new approach to Cholesky-based covariance regularization in high dimensions

Author

Listed:
  • Adam J. Rothman
  • Elizaveta Levina
  • Ji Zhu

Abstract

In this paper we propose a new regression interpretation of the Cholesky factor of the covariance matrix, as opposed to the well-known regression interpretation of the Cholesky factor of the inverse covariance, which leads to a new class of regularized covariance estimators suitable for high-dimensional problems. Regularizing the Cholesky factor of the covariance via this regression interpretation always results in a positive definite estimator. In particular, one can obtain a positive definite banded estimator of the covariance matrix at the same computational cost as the popular banded estimator of Bickel & Levina (2008b), which is not guaranteed to be positive definite. We also establish theoretical connections between banding Cholesky factors of the covariance matrix and its inverse and constrained maximum likelihood estimation under the banding constraint, and compare the numerical performance of several methods in simulations and on a sonar data example. Copyright 2010, Oxford University Press.

Suggested Citation

  • Adam J. Rothman & Elizaveta Levina & Ji Zhu, 2010. "A new approach to Cholesky-based covariance regularization in high dimensions," Biometrika, Biometrika Trust, vol. 97(3), pages 539-550.
  • Handle: RePEc:oup:biomet:v:97:y:2010:i:3:p:539-550
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asq022
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Xuan & Khare, Kshitij & Ghosh, Malay, 2020. "Consistent Bayesian sparsity selection for high-dimensional Gaussian DAG models with multiplicative and beta-mixture priors," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    2. Yumou Qiu & Song Xi Chen, 2015. "Bandwidth Selection for High-Dimensional Covariance Matrix Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1160-1174, September.
    3. Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
    4. Gunawan, David & Kohn, Robert & Nott, David, 2021. "Variational Bayes approximation of factor stochastic volatility models," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1355-1375.
    5. Lars Heinrich & Antoniya Shivarova & Martin Zurek, 2021. "Factor investing: alpha concentration versus diversification," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 464-487, October.
    6. Benjamin Poignard & Manabu Asai, 2023. "Estimation of high-dimensional vector autoregression via sparse precision matrix," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 307-326.
    7. Dengke Xu & Zhongzhan Zhang & Liucang Wu, 2014. "Bayesian analysis of joint mean and covariance models for longitudinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2504-2514, November.
    8. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    9. Deirdre Bloome & Daniel Schrage, 2021. "Covariance Regression Models for Studying Treatment Effect Heterogeneity Across One or More Outcomes: Understanding How Treatments Shape Inequality," Sociological Methods & Research, , vol. 50(3), pages 1034-1072, August.
    10. Jacob Bien & Florentina Bunea & Luo Xiao, 2016. "Convex Banding of the Covariance Matrix," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 834-845, April.
    11. Jian Zhang & Jie Li, 2022. "Factorized estimation of high‐dimensional nonparametric covariance models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 542-567, June.
    12. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    13. Guanghui Cheng & Zhengjun Zhang & Baoxue Zhang, 2017. "Test for bandedness of high-dimensional precision matrices," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 884-902, October.
    14. Wang, Luheng & Chen, Zhao & Wang, Christina Dan & Li, Runze, 2020. "Ultrahigh dimensional precision matrix estimation via refitted cross validation," Journal of Econometrics, Elsevier, vol. 215(1), pages 118-130.
    15. Kang, Xiaoning & Wang, Mingqiu, 2021. "Ensemble sparse estimation of covariance structure for exploring genetic disease data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    16. Yi, Feng & Zou, Hui, 2013. "SURE-tuned tapering estimation of large covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 339-351.
    17. Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
    18. Fang, Qian & Yu, Chen & Weiping, Zhang, 2020. "Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    19. He, Jing & Chen, Song Xi, 2016. "Testing super-diagonal structure in high dimensional covariance matrices," Journal of Econometrics, Elsevier, vol. 194(2), pages 283-297.
    20. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    21. Liang, Wanfeng & Wu, Yue & Ma, Xiaoyan, 2022. "Robust sparse precision matrix estimation for high-dimensional compositional data," Statistics & Probability Letters, Elsevier, vol. 184(C).
    22. Mauro Bernardi & Daniele Bianchi & Nicolas Bianco, 2022. "Variational inference for large Bayesian vector autoregressions," Papers 2202.12644, arXiv.org, revised Jun 2023.
    23. Ziqi Chen & Man†Lai Tang & Wei Gao, 2018. "A profile likelihood approach for longitudinal data analysis," Biometrics, The International Biometric Society, vol. 74(1), pages 220-228, March.
    24. Xue, Lingzhou & Zou, Hui, 2013. "Minimax optimal estimation of general bandable covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 45-51.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:97:y:2010:i:3:p:539-550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.