Advanced Search
MyIDEAS: Login

Uniform consistency in causal inference

Contents:

Author Info

  • James M. Robins
Registered author(s):

    Abstract

    There is a long tradition of representing causal relationships by directed acyclic graphs (Wright, 1934). Spirtes (1994), Spirtes et al. (1993) and Pearl & Verma (1991) describe procedures for inferring the presence or absence of causal arrows in the graph even if there might be unobserved confounding variables, and/or an unknown time order, and that under weak conditions, for certain combinations of directed acyclic graphs and probability distributions, are asymptotically, in sample size, consistent. These results are surprising since they seem to contradict the standard statistical wisdom that consistent estimators of causal effects do not exist for nonrandomised studies if there are potentially unobserved confounding variables. We resolve the apparent incompatibility of these views by closely examining the asymptotic properties of these causal inference procedures. We show that the asymptotically consistent procedures are 'pointwise consistent', but 'uniformly consistent' tests do not exist. Thus, no finite sample size can ever be guaranteed to approximate the asymptotic results. We also show the nonexistence of valid, consistent confidence intervals for causal effects and the nonexistence of uniformly consistent point estimators. Our results make no assumption about the form of the tests or estimators. In particular, the tests could be classical independence tests, they could be Bayes tests or they could be tests based on scoring methods such as BIC or AIC. The implications of our results for observational studies are controversial and are discussed briefly in the last section of the paper. The results hinge on the following fact: it is possible to find, for each sample size n, distributions P and Q such that P and Q are empirically indistinguishable and yet P and Q correspond to different causal effects. Copyright Biometrika Trust 2003, Oxford University Press.

    Download Info

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Bibliographic Info

    Article provided by Biometrika Trust in its journal Biometrika.

    Volume (Year): 90 (2003)
    Issue (Month): 3 (September)
    Pages: 491-515

    as in new window
    Handle: RePEc:oup:biomet:v:90:y:2003:i:3:p:491-515

    Contact details of provider:
    Postal: Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK
    Fax: 01865 267 985
    Email:
    Web page: http://biomet.oxfordjournals.org/

    Order Information:
    Web: http://www.oup.co.uk/journals

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Chen, Pu, 2010. "A time series causal model," MPRA Paper 24841, University Library of Munich, Germany.
    2. Chen, Pu & Hsiao, Chih-Ying, 2010. "Looking behind Granger causality," MPRA Paper 24859, University Library of Munich, Germany.
    3. Brisne J. V. CĂ©spedes & Elcyon C. R. Lima & Alexis Maka, 2005. "Monetary Policy, Inflation and the Level of Economic Activity in Brasil After the Real Plan: Stylized Facts From SVAR Models," Discussion Papers 1101, Instituto de Pesquisa EconĂ´mica Aplicada - IPEA.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:90:y:2003:i:3:p:491-515. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.