Advanced Search
MyIDEAS: Login

A time series causal model

Contents:

Author Info

  • Chen, Pu
Registered author(s):

Abstract

Cause-effect relations are central in economic analysis. Uncovering empirical cause-effect relations is one of the main research activities of empirical economics. In this paper we develop a time series casual model to explore casual relations among economic time series. The time series causal model is grounded on the theory of inferred causation that is a probabilistic and graph-theoretic approach to causality featured with automated learning algorithms. Applying our model we are able to infer cause-effect relations that are implied by the observed time series data. The empirically inferred causal relations can then be used to test economic theoretical hypotheses, to provide evidence for formulation of theoretical hypotheses, and to carry out policy analysis. Time series causal models are closely related to the popular vector autoregressive (VAR) models in time series analysis. They can be viewed as restricted structural VAR models identified by the inferred causal relations.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/24841/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 24841.

as in new window
Length:
Date of creation: Sep 2010
Date of revision:
Handle: RePEc:pra:mprapa:24841

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Inferred Causation; Automated Learning; VAR; Granger Causality; Wage-Price Spiral;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Swanson, N.R. & Granger, C.W.J., 1994. "Impulse Response Functions Based on Causal Approach to Residual Orthogonalization in Vector Autoregressions," Papers 9-94-1, Pennsylvania State - Department of Economics.
  2. Chihying, Hsiao & Chen, Pu, 2007. "Learning Causal Relations in Multivariate Time Series Data," Economics Discussion Papers 2007-15, Kiel Institute for the World Economy.
  3. Glymour, Clark & Spirtes, Peter, 1988. "Latent variables, causal models and overidentifying constraints," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 175-198.
  4. James M. Robins, 2003. "Uniform consistency in causal inference," Biometrika, Biometrika Trust, vol. 90(3), pages 491-515, September.
  5. Krolzig, Hans-Martin & Peter Flaschel, 2003. "Wage and Price Phillips Curves," Royal Economic Society Annual Conference 2003 128, Royal Economic Society.
  6. Chen Pu & Flaschel Peter, 2006. "Measuring the Interaction of Wage and Price Phillips Curves for the U.S. Economy," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(4), pages 1-35, December.
  7. Eichler, Michael, 2007. "Granger causality and path diagrams for multivariate time series," Journal of Econometrics, Elsevier, vol. 137(2), pages 334-353, April.
  8. Hoover, Kevin D., 2005. "Automatic Inference Of The Contemporaneous Causal Order Of A System Of Equations," Econometric Theory, Cambridge University Press, vol. 21(01), pages 69-77, February.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Chen, Pu & Hsiao, Chih-Ying, 2010. "Looking behind Granger causality," MPRA Paper 24859, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:24841. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.