IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v537y2016i7618d10.1038_nature18605.html
   My bibliography  Save this article

Dynamically encircling an exceptional point for asymmetric mode switching

Author

Listed:
  • Jörg Doppler

    (Institute for Theoretical Physics, Vienna University of Technology (TU Wien))

  • Alexei A. Mailybaev

    (Instituto Nacional de Matemática Pura e Aplicada—IMPA)

  • Julian Böhm

    (Laboratoire de Physique de la Matière Condensée, CNRS UMR 7336, Université Nice Sophia Antipolis)

  • Ulrich Kuhl

    (Laboratoire de Physique de la Matière Condensée, CNRS UMR 7336, Université Nice Sophia Antipolis)

  • Adrian Girschik

    (Institute for Theoretical Physics, Vienna University of Technology (TU Wien))

  • Florian Libisch

    (Institute for Theoretical Physics, Vienna University of Technology (TU Wien))

  • Thomas J. Milburn

    (Vienna Center for Quantum Science and Technology, Atominstitut, Vienna University of Technology (TU Wien))

  • Peter Rabl

    (Vienna Center for Quantum Science and Technology, Atominstitut, Vienna University of Technology (TU Wien))

  • Nimrod Moiseyev

    (Schulich Faculty of Chemistry and Faculty of Physics, Technion—Israel Institute of Technology)

  • Stefan Rotter

    (Institute for Theoretical Physics, Vienna University of Technology (TU Wien))

Abstract

A two-mode waveguide is designed to realize a dynamical encircling of an exceptional point at which two resonances coincide in their frequency and their rate of decay; as a result the waveguide transmits only into a unique mode at either one of its two output ports.

Suggested Citation

  • Jörg Doppler & Alexei A. Mailybaev & Julian Böhm & Ulrich Kuhl & Adrian Girschik & Florian Libisch & Thomas J. Milburn & Peter Rabl & Nimrod Moiseyev & Stefan Rotter, 2016. "Dynamically encircling an exceptional point for asymmetric mode switching," Nature, Nature, vol. 537(7618), pages 76-79, September.
  • Handle: RePEc:nat:nature:v:537:y:2016:i:7618:d:10.1038_nature18605
    DOI: 10.1038/nature18605
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature18605
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature18605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Król & I. Septembre & P. Oliwa & M. Kędziora & K. Łempicka-Mirek & M. Muszyński & R. Mazur & P. Morawiak & W. Piecek & P. Kula & W. Bardyszewski & P. G. Lagoudakis & D. D. Solnyshkov & G. Malpuech , 2022. "Annihilation of exceptional points from different Dirac valleys in a 2D photonic system," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. Chitres Guria & Qi Zhong & Sahin Kaya Ozdemir & Yogesh S. S. Patil & Ramy El-Ganainy & Jack Gwynne Emmet Harris, 2024. "Resolving the topology of encircling multiple exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Steffen Wittrock & Salvatore Perna & Romain Lebrun & Katia Ho & Roberta Dutra & Ricardo Ferreira & Paolo Bortolotti & Claudio Serpico & Vincent Cros, 2024. "Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. A. Hashemi & K. Busch & D. N. Christodoulides & S. K. Ozdemir & R. El-Ganainy, 2022. "Linear response theory of open systems with exceptional points," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Takuya Inoue & Masahiro Yoshida & John Gelleta & Koki Izumi & Keisuke Yoshida & Kenji Ishizaki & Menaka Zoysa & Susumu Noda, 2022. "General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-mode operation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Ievgen I. Arkhipov & Adam Miranowicz & Fabrizio Minganti & Şahin K. Özdemir & Franco Nori, 2023. "Dynamically crossing diabolic points while encircling exceptional curves: A programmable symmetric-asymmetric multimode switch," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Zijin Yang & Po-Sheng Huang & Yu-Tsung Lin & Haoye Qin & Jesús Zúñiga-Pérez & Yuzhi Shi & Zhanshan Wang & Xinbin Cheng & Man-Chung Tang & Sanyang Han & Boubacar Kanté & Bo Li & Pin Chieh Wu & Patrice , 2024. "Creating pairs of exceptional points for arbitrary polarization control: asymmetric vectorial wavefront modulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:537:y:2016:i:7618:d:10.1038_nature18605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.