IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44428-z.html
   My bibliography  Save this article

Creating pairs of exceptional points for arbitrary polarization control: asymmetric vectorial wavefront modulation

Author

Listed:
  • Zijin Yang

    (Tsinghua University
    Tsinghua University)

  • Po-Sheng Huang

    (National Cheng Kung University)

  • Yu-Tsung Lin

    (National Cheng Kung University)

  • Haoye Qin

    (Tsinghua University)

  • Jesús Zúñiga-Pérez

    (Sophia Antipolis
    Nanyang Technological University)

  • Yuzhi Shi

    (Tongji University)

  • Zhanshan Wang

    (Tongji University)

  • Xinbin Cheng

    (Tongji University)

  • Man-Chung Tang

    (Tsinghua University)

  • Sanyang Han

    (Tsinghua University)

  • Boubacar Kanté

    (University of California)

  • Bo Li

    (Tsinghua University
    Suzhou Laboratory)

  • Pin Chieh Wu

    (National Cheng Kung University
    National Cheng Kung University
    National Cheng Kung University)

  • Patrice Genevet

    (Sophia Antipolis
    Colorado School of Mines)

  • Qinghua Song

    (Tsinghua University
    Suzhou Laboratory)

Abstract

Exceptional points (EPs) can achieve intriguing asymmetric control in non-Hermitian systems due to the degeneracy of eigenstates. Here, we present a general method that extends this specific asymmetric response of EP photonic systems to address any arbitrary fully-polarized light. By rotating the meta-structures at EP, Pancharatnam-Berry (PB) phase can be exclusively encoded on one of the circular polarization-conversion channels. To address any arbitrary wavefront, we superpose the optical signals originating from two orthogonally polarized -yet degenerate- EP eigenmodes. The construction of such orthogonal EP eigenstates pairs is achieved by applying mirror-symmetry to the nanostructure geometry flipping thereby the EP eigenmode handedness from left to right circular polarization. Non-Hermitian reflective PB metasurfaces designed using such EP superposition enable arbitrary, yet unidirectional, vectorial wavefront shaping devices. Our results open new avenues for topological wave control and illustrate the capabilities of topological photonics to distinctively operate on arbitrary polarization-state with enhanced performances.

Suggested Citation

  • Zijin Yang & Po-Sheng Huang & Yu-Tsung Lin & Haoye Qin & Jesús Zúñiga-Pérez & Yuzhi Shi & Zhanshan Wang & Xinbin Cheng & Man-Chung Tang & Sanyang Han & Boubacar Kanté & Bo Li & Pin Chieh Wu & Patrice , 2024. "Creating pairs of exceptional points for arbitrary polarization control: asymmetric vectorial wavefront modulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44428-z
    DOI: 10.1038/s41467-023-44428-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44428-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44428-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. Gao & E. Estrecho & K. Y. Bliokh & T. C. H. Liew & M. D. Fraser & S. Brodbeck & M. Kamp & C. Schneider & S. Höfling & Y. Yamamoto & F. Nori & Y. S. Kivshar & A. G. Truscott & R. G. Dall & E. A. Ost, 2015. "Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard," Nature, Nature, vol. 526(7574), pages 554-558, October.
    2. Jörg Doppler & Alexei A. Mailybaev & Julian Böhm & Ulrich Kuhl & Adrian Girschik & Florian Libisch & Thomas J. Milburn & Peter Rabl & Nimrod Moiseyev & Stefan Rotter, 2016. "Dynamically encircling an exceptional point for asymmetric mode switching," Nature, Nature, vol. 537(7618), pages 76-79, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. M. Król & I. Septembre & P. Oliwa & M. Kędziora & K. Łempicka-Mirek & M. Muszyński & R. Mazur & P. Morawiak & W. Piecek & P. Kula & W. Bardyszewski & P. G. Lagoudakis & D. D. Solnyshkov & G. Malpuech , 2022. "Annihilation of exceptional points from different Dirac valleys in a 2D photonic system," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    3. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. A. Hashemi & K. Busch & D. N. Christodoulides & S. K. Ozdemir & R. El-Ganainy, 2022. "Linear response theory of open systems with exceptional points," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Ievgen I. Arkhipov & Adam Miranowicz & Fabrizio Minganti & Şahin K. Özdemir & Franco Nori, 2023. "Dynamically crossing diabolic points while encircling exceptional curves: A programmable symmetric-asymmetric multimode switch," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. M. Wurdack & T. Yun & M. Katzer & A. G. Truscott & A. Knorr & M. Selig & E. A. Ostrovskaya & E. Estrecho, 2023. "Negative-mass exciton polaritons induced by dissipative light-matter coupling in an atomically thin semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Chitres Guria & Qi Zhong & Sahin Kaya Ozdemir & Yogesh S. S. Patil & Ramy El-Ganainy & Jack Gwynne Emmet Harris, 2024. "Resolving the topology of encircling multiple exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Danial Saadatmand & Aliakbar Moradi Marjaneh, 2022. "Scattering of the asymmetric $$\phi ^6$$ ϕ 6 kinks from a $${\mathcal{PT}\mathcal{}}$$ PT -symmetric perturbation: creating multiple kink–antikink pairs from phonons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-13, September.
    9. Takuya Inoue & Masahiro Yoshida & John Gelleta & Koki Izumi & Keisuke Yoshida & Kenji Ishizaki & Menaka Zoysa & Susumu Noda, 2022. "General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-mode operation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Steffen Wittrock & Salvatore Perna & Romain Lebrun & Katia Ho & Roberta Dutra & Ricardo Ferreira & Paolo Bortolotti & Claudio Serpico & Vincent Cros, 2024. "Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Yao Li & Xuekai Ma & Xiaokun Zhai & Meini Gao & Haitao Dai & Stefan Schumacher & Tingge Gao, 2022. "Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature," Nature Communications, Nature, vol. 13(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44428-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.