IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v410y2001i6830d10.1038_35071062.html
   My bibliography  Save this article

Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition

Author

Listed:
  • Peter B. Reich

    (University of Minnesota)

  • Jean Knops

    (Evolution and Behavior, University of Minnesota)

  • David Tilman

    (Evolution and Behavior, University of Minnesota)

  • Joseph Craine

    (University of California)

  • David Ellsworth

    (Brookhaven National Laboratory)

  • Mark Tjoelker

    (University of Minnesota)

  • Tali Lee

    (University of Minnesota)

  • David Wedin

    (School of Natural Resource Sciences, University of Nebraska)

  • Shahid Naeem

    (Evolution and Behavior, University of Minnesota)

  • Dan Bahauddin

    (University of Minnesota)

  • George Hendrey

    (Brookhaven National Laboratory)

  • Shibu Jose

    (University of Minnesota)

  • Keith Wrage

    (University of Minnesota)

  • Jenny Goth

    (University of Minnesota)

  • Wendy Bengston

    (University of Minnesota)

Abstract

Human actions are causing declines in plant biodiversity, increases in atmospheric CO2 concentrations and increases in nitrogen deposition; however, the interactive effects of these factors on ecosystem processes are unknown1,2. Reduced biodiversity has raised numerous concerns, including the possibility that ecosystem functioning may be affected negatively1,2,3,4, which might be particularly important in the face of other global changes5,6. Here we present results of a grassland field experiment in Minnesota, USA, that tests the hypothesis that plant diversity and composition influence the enhancement of biomass and carbon acquisition in ecosystems subjected to elevated atmospheric CO2 concentrations and nitrogen deposition. The study experimentally controlled plant diversity (1, 4, 9 or 16 species), soil nitrogen (unamended versus deposition of 4 g of nitrogen per m2 per yr) and atmospheric CO2 concentrations using free-air CO2 enrichment (ambient, 368 µmol mol-1, versus elevated, 560 µmol mol-1). We found that the enhanced biomass accumulation in response to elevated levels of CO2 or nitrogen, or their combination, is less in species-poor than in species-rich assemblages.

Suggested Citation

  • Peter B. Reich & Jean Knops & David Tilman & Joseph Craine & David Ellsworth & Mark Tjoelker & Tali Lee & David Wedin & Shahid Naeem & Dan Bahauddin & George Hendrey & Shibu Jose & Keith Wrage & Jenny, 2001. "Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition," Nature, Nature, vol. 410(6830), pages 809-810, April.
  • Handle: RePEc:nat:nature:v:410:y:2001:i:6830:d:10.1038_35071062
    DOI: 10.1038/35071062
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35071062
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35071062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    2. Chunbo Chen & Chi Zhang, 2017. "Projecting the CO 2 and Climatic Change Effects on the Net Primary Productivity of the Urban Ecosystems in Phoenix, AZ in the 21st Century under Multiple RCP (Representative Concentration Pathway) Sce," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    3. Yuna Seo & Keisuke Ide & Nobutaka Kitahata & Kazuyuki Kuchitsu & Kiyoshi Dowaki, 2017. "Environmental Impact and Nutritional Improvement of Elevated CO 2 Treatment: A Case Study of Spinach Production," Sustainability, MDPI, vol. 9(10), pages 1-9, October.
    4. Zhengkun Hu & Manuel Delgado-Baquerizo & Nicolas Fanin & Xiaoyun Chen & Yan Zhou & Guozhen Du & Feng Hu & Lin Jiang & Shuijin Hu & Manqiang Liu, 2024. "Nutrient-induced acidification modulates soil biodiversity-function relationships," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Tilman, David & Polasky, Stephen & Lehman, Clarence, 2005. "Diversity, productivity and temporal stability in the economies of humans and nature," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 405-426, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:410:y:2001:i:6830:d:10.1038_35071062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.