IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v389y1997i6653d10.1038_39807.html
   My bibliography  Save this article

The capsaicin receptor: a heat-activated ion channel in the pain pathway

Author

Listed:
  • Michael J. Caterina

    (Departments of Cellular and Molecular Pharmacology)

  • Mark A. Schumacher

    (Departments of Anesthesia)

  • Makoto Tominaga

    (Departments of Cellular and Molecular Pharmacology)

  • Tobias A. Rosen

    (Departments of Cellular and Molecular Pharmacology)

  • Jon D. Levine

    (University of California)

  • David Julius

    (Departments of Cellular and Molecular Pharmacology)

Abstract

Capsaicin, the main pungent ingredient in ‘hot’ chilli peppers, elicits a sensation of burning pain by selectively activating sensory neurons that convey information about noxious stimuli to the central nervous system. We have used an expression cloning strategy based on calcium influx to isolate a functional cDNA encoding a capsaicin receptor from sensory neurons. This receptor is a non-selective cation channel that is structurally related to members of the TRP family of ion channels. The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo.

Suggested Citation

  • Michael J. Caterina & Mark A. Schumacher & Makoto Tominaga & Tobias A. Rosen & Jon D. Levine & David Julius, 1997. "The capsaicin receptor: a heat-activated ion channel in the pain pathway," Nature, Nature, vol. 389(6653), pages 816-824, October.
  • Handle: RePEc:nat:nature:v:389:y:1997:i:6653:d:10.1038_39807
    DOI: 10.1038/39807
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/39807
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/39807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okwa O Omolade, 2018. "Of Parasites and Their Hosts," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(1), pages 8933-8935, December.
    2. Nolwenn Tessier & Mallory Ducrozet & Sylvie Ducreux & Fabien Van Coppenolle & Julien Faure, 2018. "Pathophysiological Role of Trpv1 In Malignant Hyperthermia: Identification of New Variants," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(1), pages 8891-8893, December.
    3. Filomena Perri & Adriana Coricello & James D. Adams, 2020. "Monoterpenoids: The Next Frontier in the Treatment of Chronic Pain?," J, MDPI, vol. 3(2), pages 1-20, May.
    4. Jongdae Won & Jinsung Kim & Hyeongseop Jeong & Jinhyeong Kim & Shasha Feng & Byeongseok Jeong & Misun Kwak & Juyeon Ko & Wonpil Im & Insuk So & Hyung Ho Lee, 2023. "Molecular architecture of the Gαi-bound TRPC5 ion channel," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Liying Zhang & Charlotte Simonsen & Lucie Zimova & Kaituo Wang & Lavanya Moparthi & Rachelle Gaudet & Maria Ekoff & Gunnar Nilsson & Ute A. Hellmich & Viktorie Vlachova & Pontus Gourdon & Peter M. Zyg, 2022. "Cannabinoid non-cannabidiol site modulation of TRPV2 structure and function," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Zakir, HM & Mostafeezur, RM & Suzuki, A & Hitomi, S & Maeda, T & Seo, K & Yamada, Y & Yamamura, K & Lev, S & Binshtok, AM & Iwata, K & Kitagawa, J, 2012. "Expression of TRPV1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation," MPRA Paper 50539, University Library of Munich, Germany.
    7. Heng Zhang & Jia-Jia Lin & Ya-Kai Xie & Xiu-Zu Song & Jia-Yi Sun & Bei-Lei Zhang & Yun-Kun Qi & Zhen-Zhong Xu & Fan Yang, 2023. "Structure-guided peptide engineering of a positive allosteric modulator targeting the outer pore of TRPV1 for long-lasting analgesia," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Barbara Storti & Carmine Di Rienzo & Francesco Cardarelli & Ranieri Bizzarri & Fabio Beltram, 2015. "Unveiling TRPV1 Spatio-Temporal Organization in Live Cell Membranes," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    9. Hiroki Ota & Kimiaki Katanosaka & Shiori Murase & Makiko Kashio & Makoto Tominaga & Kazue Mizumura, 2013. "TRPV1 and TRPV4 Play Pivotal Roles in Delayed Onset Muscle Soreness," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-10, June.
    10. Luciano Maria Catalfamo & Giulia Marrone & Michele Basilicata & Ilaria Vivarini & Vincenza Paolino & David Della-Morte & Francesco Saverio De Ponte & Francesca Di Daniele & Domenico Quattrone & Danilo, 2022. "The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    11. Shogo Hori & Michihiro Tateyama & Tsuyoshi Shirai & Yoshihiro Kubo & Osamu Saitoh, 2023. "Two single-point mutations in Ankyrin Repeat one drastically change the threshold temperature of TRPV1," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Hossain Md Zakir & Rahman Md Mostafeezur & Akiko Suzuki & Suzuro Hitomi & Ikuko Suzuki & Takeyasu Maeda & Kenji Seo & Yoshiaki Yamada & Kensuke Yamamura & Shaya Lev & Alexander M Binshtok & Koichi Iwa, 2012. "Expression of TRPV1 Channels after Nerve Injury Provides an Essential Delivery Tool for Neuropathic Pain Attenuation," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-12, September.
    13. Xiaolong Gao & Philipp A. M. Schmidpeter & Vladimir Berka & Ryan J. Durham & Chen Fan & Vasanthi Jayaraman & Crina M. Nimigean, 2022. "Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Petra I Baeumler & Johannes Fleckenstein & Shin Takayama & Michael Simang & Takashi Seki & Dominik Irnich, 2014. "Effects of Acupuncture on Sensory Perception: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-40, December.
    15. Maxim V Nikolaev & Natalia A Dorofeeva & Margarita S Komarova & Yuliya V Korolkova & Yaroslav A Andreev & Irina V Mosharova & Eugene V Grishin & Denis B Tikhonov & Sergey A Kozlov, 2017. "TRPV1 activation power can switch an action mode for its polypeptide ligands," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-16, May.
    16. Arthur Neuberger & Mai Oda & Yury A. Nikolaev & Kirill D. Nadezhdin & Elena O. Gracheva & Sviatoslav N. Bagriantsev & Alexander I. Sobolevsky, 2023. "Human TRPV1 structure and inhibition by the analgesic SB-366791," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:389:y:1997:i:6653:d:10.1038_39807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.