IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38162-9.html
   My bibliography  Save this article

Human TRPV1 structure and inhibition by the analgesic SB-366791

Author

Listed:
  • Arthur Neuberger

    (Columbia University)

  • Mai Oda

    (Yale University School of Medicine)

  • Yury A. Nikolaev

    (Yale University School of Medicine)

  • Kirill D. Nadezhdin

    (Columbia University)

  • Elena O. Gracheva

    (Yale University School of Medicine
    Yale University School of Medicine
    Yale University School of Medicine
    Yale University School of Medicine)

  • Sviatoslav N. Bagriantsev

    (Yale University School of Medicine)

  • Alexander I. Sobolevsky

    (Columbia University)

Abstract

Pain therapy has remained conceptually stagnant since the opioid crisis, which highlighted the dangers of treating pain with opioids. An alternative addiction-free strategy to conventional painkiller-based treatment is targeting receptors at the origin of the pain pathway, such as transient receptor potential (TRP) ion channels. Thus, a founding member of the vanilloid subfamily of TRP channels, TRPV1, represents one of the most sought-after pain therapy targets. The need for selective TRPV1 inhibitors extends beyond pain treatment, to other diseases associated with this channel, including psychiatric disorders. Here we report the cryo-electron microscopy structures of human TRPV1 in the apo state and in complex with the TRPV1-specific nanomolar-affinity analgesic antagonist SB-366791. SB-366791 binds to the vanilloid site and acts as an allosteric hTRPV1 inhibitor. SB-366791 binding site is supported by mutagenesis combined with electrophysiological recordings and can be further explored to design new drugs targeting TRPV1 in disease conditions.

Suggested Citation

  • Arthur Neuberger & Mai Oda & Yury A. Nikolaev & Kirill D. Nadezhdin & Elena O. Gracheva & Sviatoslav N. Bagriantsev & Alexander I. Sobolevsky, 2023. "Human TRPV1 structure and inhibition by the analgesic SB-366791," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38162-9
    DOI: 10.1038/s41467-023-38162-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38162-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38162-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael J. Caterina & Mark A. Schumacher & Makoto Tominaga & Tobias A. Rosen & Jon D. Levine & David Julius, 1997. "The capsaicin receptor: a heat-activated ion channel in the pain pathway," Nature, Nature, vol. 389(6653), pages 816-824, October.
    2. Do Hoon Kwon & Feng Zhang & Justin G. Fedor & Yang Suo & Seok-Yong Lee, 2022. "Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Appu K. Singh & Kei Saotome & Luke L. McGoldrick & Alexander I. Sobolevsky, 2018. "Structural bases of TRP channel TRPV6 allosteric modulation by 2-APB," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    4. Michael J. Caterina & Tobias A. Rosen & Makoto Tominaga & Anthony J. Brake & David Julius, 1999. "A capsaicin-receptor homologue with a high threshold for noxious heat," Nature, Nature, vol. 398(6726), pages 436-441, April.
    5. Stephen B. Long & Xiao Tao & Ernest B. Campbell & Roderick MacKinnon, 2007. "Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment," Nature, Nature, vol. 450(7168), pages 376-382, November.
    6. Yuan Gao & Erhu Cao & David Julius & Yifan Cheng, 2016. "TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action," Nature, Nature, vol. 534(7607), pages 347-351, June.
    7. Maofu Liao & Erhu Cao & David Julius & Yifan Cheng, 2013. "Structure of the TRPV1 ion channel determined by electron cryo-microscopy," Nature, Nature, vol. 504(7478), pages 107-112, December.
    8. Arthur Neuberger & Kirill D. Nadezhdin & Alexander I. Sobolevsky, 2022. "Structural mechanism of TRPV3 channel inhibition by the anesthetic dyclonine," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Erhu Cao & Maofu Liao & Yifan Cheng & David Julius, 2013. "TRPV1 structures in distinct conformations reveal activation mechanisms," Nature, Nature, vol. 504(7478), pages 113-118, December.
    10. Sara L. Morales-Lázaro & Itzel Llorente & Félix Sierra-Ramírez & Ana E. López-Romero & Miguel Ortíz-Rentería & Barbara Serrano-Flores & Sidney A. Simon & León D. Islas & Tamara Rosenbaum, 2016. "Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch," Nature Communications, Nature, vol. 7(1), pages 1-12, December.
    11. Kirill D. Nadezhdin & Arthur Neuberger & Yury A. Nikolaev & Lyle A. Murphy & Elena O. Gracheva & Sviatoslav N. Bagriantsev & Alexander I. Sobolevsky, 2021. "Extracellular cap domain is an essential component of the TRPV1 gating mechanism," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Arthur Neuberger & Kirill D. Nadezhdin & Alexander I. Sobolevsky, 2021. "Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Jeffrey Khau & Kirill D. Nadezhdin & Lena S. Khosrof & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Molecular pathway and structural mechanism of human oncochannel TRPV6 inhibition by the phytocannabinoid tetrahydrocannabivarin," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liying Zhang & Charlotte Simonsen & Lucie Zimova & Kaituo Wang & Lavanya Moparthi & Rachelle Gaudet & Maria Ekoff & Gunnar Nilsson & Ute A. Hellmich & Viktorie Vlachova & Pontus Gourdon & Peter M. Zyg, 2022. "Cannabinoid non-cannabidiol site modulation of TRPV2 structure and function," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Jeffrey Khau & Kirill D. Nadezhdin & Lena S. Khosrof & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Molecular pathway and structural mechanism of human oncochannel TRPV6 inhibition by the phytocannabinoid tetrahydrocannabivarin," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Kirill D. Nadezhdin & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Ruth A. Pumroy & Anna D. Protopopova & Tabea C. Fricke & Iris U. Lange & Ferdinand M. Haug & Phuong T. Nguyen & Pamela N. Gallo & Bárbara B. Sousa & Gonçalo J. L. Bernardes & Vladimir Yarov-Yarovoy & , 2022. "Structural insights into TRPV2 activation by small molecules," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Do Hoon Kwon & Feng Zhang & Justin G. Fedor & Yang Suo & Seok-Yong Lee, 2022. "Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Kirill D. Nadezhdin & Irina A. Talyzina & Aravind Parthasarathy & Arthur Neuberger & David X. Zhang & Alexander I. Sobolevsky, 2023. "Structure of human TRPV4 in complex with GTPase RhoA," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Barbara Storti & Carmine Di Rienzo & Francesco Cardarelli & Ranieri Bizzarri & Fabio Beltram, 2015. "Unveiling TRPV1 Spatio-Temporal Organization in Live Cell Membranes," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    8. Arthur Neuberger & Kirill D. Nadezhdin & Alexander I. Sobolevsky, 2021. "Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Maxim V Nikolaev & Natalia A Dorofeeva & Margarita S Komarova & Yuliya V Korolkova & Yaroslav A Andreev & Irina V Mosharova & Eugene V Grishin & Denis B Tikhonov & Sergey A Kozlov, 2017. "TRPV1 activation power can switch an action mode for its polypeptide ligands," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-16, May.
    10. Heng Zhang & Jia-Jia Lin & Ya-Kai Xie & Xiu-Zu Song & Jia-Yi Sun & Bei-Lei Zhang & Yun-Kun Qi & Zhen-Zhong Xu & Fan Yang, 2023. "Structure-guided peptide engineering of a positive allosteric modulator targeting the outer pore of TRPV1 for long-lasting analgesia," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Xiaolong Gao & Philipp A. M. Schmidpeter & Vladimir Berka & Ryan J. Durham & Chen Fan & Vasanthi Jayaraman & Crina M. Nimigean, 2022. "Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Purushotham Selvakumar & Ana I. Fernández-Mariño & Nandish Khanra & Changhao He & Alice J. Paquette & Bing Wang & Ruiqi Huang & Vaughn V. Smider & William J. Rice & Kenton J. Swartz & Joel R. Meyerson, 2022. "Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Zakir, HM & Mostafeezur, RM & Suzuki, A & Hitomi, S & Maeda, T & Seo, K & Yamada, Y & Yamamura, K & Lev, S & Binshtok, AM & Iwata, K & Kitagawa, J, 2012. "Expression of TRPV1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation," MPRA Paper 50539, University Library of Munich, Germany.
    14. Hiroki Ota & Kimiaki Katanosaka & Shiori Murase & Makiko Kashio & Makoto Tominaga & Kazue Mizumura, 2013. "TRPV1 and TRPV4 Play Pivotal Roles in Delayed Onset Muscle Soreness," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-10, June.
    15. Hossain Md Zakir & Rahman Md Mostafeezur & Akiko Suzuki & Suzuro Hitomi & Ikuko Suzuki & Takeyasu Maeda & Kenji Seo & Yoshiaki Yamada & Kensuke Yamamura & Shaya Lev & Alexander M Binshtok & Koichi Iwa, 2012. "Expression of TRPV1 Channels after Nerve Injury Provides an Essential Delivery Tool for Neuropathic Pain Attenuation," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-12, September.
    16. Petra I Baeumler & Johannes Fleckenstein & Shin Takayama & Michael Simang & Takashi Seki & Dominik Irnich, 2014. "Effects of Acupuncture on Sensory Perception: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-40, December.
    17. Mingxing Wang & Jin He & Shanshan Li & Qianwen Cai & Kaiming Zhang & Ji She, 2023. "Structural basis of vitamin C recognition and transport by mammalian SVCT1 transporter," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Kaihua Zhang & Hao Wu & Nicholas Hoppe & Aashish Manglik & Yifan Cheng, 2022. "Fusion protein strategies for cryo-EM study of G protein-coupled receptors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Filomena Perri & Adriana Coricello & James D. Adams, 2020. "Monoterpenoids: The Next Frontier in the Treatment of Chronic Pain?," J, MDPI, vol. 3(2), pages 1-20, May.
    20. Luciano Maria Catalfamo & Giulia Marrone & Michele Basilicata & Ilaria Vivarini & Vincenza Paolino & David Della-Morte & Francesco Saverio De Ponte & Francesca Di Daniele & Domenico Quattrone & Danilo, 2022. "The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review," IJERPH, MDPI, vol. 19(18), pages 1-20, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38162-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.