IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i18p11187-d908064.html
   My bibliography  Save this article

The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review

Author

Listed:
  • Luciano Maria Catalfamo

    (Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
    These authors contributed equally to this work.)

  • Giulia Marrone

    (UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
    These authors contributed equally to this work.)

  • Michele Basilicata

    (UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00100 Rome, Italy
    These authors contributed equally to this work.)

  • Ilaria Vivarini

    (UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy)

  • Vincenza Paolino

    (UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy)

  • David Della-Morte

    (Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
    Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
    Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA)

  • Francesco Saverio De Ponte

    (Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy)

  • Francesca Di Daniele

    (School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
    UOSD of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy)

  • Domenico Quattrone

    (Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy)

  • Danilo De Rinaldis

    (Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy)

  • Patrizio Bollero

    (UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy)

  • Nicola Di Daniele

    (UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy)

  • Annalisa Noce

    (UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy)

Abstract

Capsaicin is a chili peppers extract, genus Capsicum, commonly used as a food spice. Since ancient times, Capsaicin has been used as a “homeopathic remedy” for treating a wild range of pathological conditions but without any scientific knowledge about its action. Several studies have demonstrated its potentiality in cardiovascular, nephrological, nutritional, and other medical fields. Capsaicin exerts its actions thanks to the bond with transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is a nociceptive receptor, and its activation starts with a neurosensitive impulse, responsible for a burning pain sensation. However, constant local application of Capsaicin desensitized neuronal cells and leads to relief from neuropathic pain. In this review, we analyze the potential adjuvant role of Capsaicin in the treatment of different pathological conditions either in internal medicine or dentistry. Moreover, we present our experience in five patients affected by oro-facial pain consequent to post-traumatic trigeminal neuropathy, not responsive to any remedy, and successfully treated with topical application of Capsaicin. The topical application of Capsaicin is safe, effective, and quite tolerated by patients. For these reasons, in addition to the already-proven beneficial actions in the internal field, it represents a promising method for the treatment of neuropathic oral diseases.

Suggested Citation

  • Luciano Maria Catalfamo & Giulia Marrone & Michele Basilicata & Ilaria Vivarini & Vincenza Paolino & David Della-Morte & Francesco Saverio De Ponte & Francesca Di Daniele & Domenico Quattrone & Danilo, 2022. "The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11187-:d:908064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/18/11187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/18/11187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael J. Caterina & Mark A. Schumacher & Makoto Tominaga & Tobias A. Rosen & Jon D. Levine & David Julius, 1997. "The capsaicin receptor: a heat-activated ion channel in the pain pathway," Nature, Nature, vol. 389(6653), pages 816-824, October.
    2. David E. Clapham, 2003. "TRP channels as cellular sensors," Nature, Nature, vol. 426(6966), pages 517-524, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filomena Perri & Adriana Coricello & James D. Adams, 2020. "Monoterpenoids: The Next Frontier in the Treatment of Chronic Pain?," J, MDPI, vol. 3(2), pages 1-20, May.
    2. Zakir, HM & Mostafeezur, RM & Suzuki, A & Hitomi, S & Maeda, T & Seo, K & Yamada, Y & Yamamura, K & Lev, S & Binshtok, AM & Iwata, K & Kitagawa, J, 2012. "Expression of TRPV1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation," MPRA Paper 50539, University Library of Munich, Germany.
    3. Hiroki Ota & Kimiaki Katanosaka & Shiori Murase & Makiko Kashio & Makoto Tominaga & Kazue Mizumura, 2013. "TRPV1 and TRPV4 Play Pivotal Roles in Delayed Onset Muscle Soreness," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-10, June.
    4. Hossain Md Zakir & Rahman Md Mostafeezur & Akiko Suzuki & Suzuro Hitomi & Ikuko Suzuki & Takeyasu Maeda & Kenji Seo & Yoshiaki Yamada & Kensuke Yamamura & Shaya Lev & Alexander M Binshtok & Koichi Iwa, 2012. "Expression of TRPV1 Channels after Nerve Injury Provides an Essential Delivery Tool for Neuropathic Pain Attenuation," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-12, September.
    5. Petra I Baeumler & Johannes Fleckenstein & Shin Takayama & Michael Simang & Takashi Seki & Dominik Irnich, 2014. "Effects of Acupuncture on Sensory Perception: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-40, December.
    6. Jiangtao Zhang & Yiqiang Shi & Junping Fan & Huiwen Chen & Zhanyi Xia & Bo Huang & Juquan Jiang & Jianke Gong & Zhuo Huang & Daohua Jiang, 2022. "N-type fast inactivation of a eukaryotic voltage-gated sodium channel," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Heng Zhang & Jia-Jia Lin & Ya-Kai Xie & Xiu-Zu Song & Jia-Yi Sun & Bei-Lei Zhang & Yun-Kun Qi & Zhen-Zhong Xu & Fan Yang, 2023. "Structure-guided peptide engineering of a positive allosteric modulator targeting the outer pore of TRPV1 for long-lasting analgesia," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Jongdae Won & Jinsung Kim & Hyeongseop Jeong & Jinhyeong Kim & Shasha Feng & Byeongseok Jeong & Misun Kwak & Juyeon Ko & Wonpil Im & Insuk So & Hyung Ho Lee, 2023. "Molecular architecture of the Gαi-bound TRPC5 ion channel," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Elandia A Santos & Bruna SL Coelho & Ester Roffê & Helton C Santiago & Jacqueline I Alvarez-Leite & Lilian G Teixeira, 2018. "Topical Application of Capsaicin Reduces Weight Loss Allergen Aversion and Intestinal Mucosa Inflammation in A Food Allergy Experimental Model," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 10(5), pages 8147-8151, November.
    10. Xiaolong Gao & Philipp A. M. Schmidpeter & Vladimir Berka & Ryan J. Durham & Chen Fan & Vasanthi Jayaraman & Crina M. Nimigean, 2022. "Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Barbara Storti & Carmine Di Rienzo & Francesco Cardarelli & Ranieri Bizzarri & Fabio Beltram, 2015. "Unveiling TRPV1 Spatio-Temporal Organization in Live Cell Membranes," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    12. Arthur Neuberger & Mai Oda & Yury A. Nikolaev & Kirill D. Nadezhdin & Elena O. Gracheva & Sviatoslav N. Bagriantsev & Alexander I. Sobolevsky, 2023. "Human TRPV1 structure and inhibition by the analgesic SB-366791," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Nolwenn Tessier & Mallory Ducrozet & Sylvie Ducreux & Fabien Van Coppenolle & Julien Faure, 2018. "Pathophysiological Role of Trpv1 In Malignant Hyperthermia: Identification of New Variants," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(1), pages 8891-8893, December.
    14. Liying Zhang & Charlotte Simonsen & Lucie Zimova & Kaituo Wang & Lavanya Moparthi & Rachelle Gaudet & Maria Ekoff & Gunnar Nilsson & Ute A. Hellmich & Viktorie Vlachova & Pontus Gourdon & Peter M. Zyg, 2022. "Cannabinoid non-cannabidiol site modulation of TRPV2 structure and function," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Shogo Hori & Michihiro Tateyama & Tsuyoshi Shirai & Yoshihiro Kubo & Osamu Saitoh, 2023. "Two single-point mutations in Ankyrin Repeat one drastically change the threshold temperature of TRPV1," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Maxim V Nikolaev & Natalia A Dorofeeva & Margarita S Komarova & Yuliya V Korolkova & Yaroslav A Andreev & Irina V Mosharova & Eugene V Grishin & Denis B Tikhonov & Sergey A Kozlov, 2017. "TRPV1 activation power can switch an action mode for its polypeptide ligands," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-16, May.
    17. Okwa O Omolade, 2018. "Of Parasites and Their Hosts," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(1), pages 8933-8935, December.
    18. Kirill D. Nadezhdin & Leonor Correia & Chamali Narangoda & Dhilon S. Patel & Arthur Neuberger & Thomas Gudermann & Maria G. Kurnikova & Vladimir Chubanov & Alexander I. Sobolevsky, 2023. "Structural mechanisms of TRPM7 activation and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11187-:d:908064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.