IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v5y2020i9d10.1038_s41560-020-0675-9.html
   My bibliography  Save this article

Five thermal energy grand challenges for decarbonization

Author

Listed:
  • Asegun Henry

    (Massachusetts Institute of Technology)

  • Ravi Prasher

    (Lawrence Berkeley National Laboratory
    University of California)

  • Arun Majumdar

    (Stanford Precourt Institute for Energy
    Stanford University
    SLAC)

Abstract

Roughly 90% of the world’s energy use today involves generation or manipulation of heat over a wide range of temperatures. Here, we note five key applications of research in thermal energy that could help make significant progress towards mitigating climate change at the necessary scale and urgency.

Suggested Citation

  • Asegun Henry & Ravi Prasher & Arun Majumdar, 2020. "Five thermal energy grand challenges for decarbonization," Nature Energy, Nature, vol. 5(9), pages 635-637, September.
  • Handle: RePEc:nat:natene:v:5:y:2020:i:9:d:10.1038_s41560-020-0675-9
    DOI: 10.1038/s41560-020-0675-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-020-0675-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-020-0675-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amy, Caleb & Pishahang, Mehdi & Kelsall, Colin C. & LaPotin, Alina & Henry, Asegun, 2021. "High-temperature Pumping of Silicon for Thermal Energy Grid Storage," Energy, Elsevier, vol. 233(C).
    2. Yaoge Jing & Zhengchuang Zhao & Xiaoling Cao & Qinrong Sun & Yanping Yuan & Tingxian Li, 2023. "Ultraflexible, cost-effective and scalable polymer-based phase change composites via chemical cross-linking for wearable thermal management," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Shao, Z. & Wang, Z.G. & Poredoš, P. & Ge, T.S. & Wang, R.Z., 2023. "Highly efficient desiccant-coated heat exchanger-based heat pump to decarbonize rail transportation," Energy, Elsevier, vol. 271(C).
    4. Chang, Jinwei & Li, Zhi & Huang, Yan & Yu, Xiaonan & Jiang, Ruicheng & Huang, Rui & Yu, Xiaoli, 2022. "Multi-objective optimization of a novel combined cooling, dehumidification and power system using improved M-PSO algorithm," Energy, Elsevier, vol. 239(PE).
    5. Kou, Xiaoxue & Wang, Ruzhu, 2023. "Thermodynamic analysis of electric to thermal heating pathways coupled with thermal energy storage," Energy, Elsevier, vol. 284(C).
    6. Scott C. Rowe & Taylor A. Ariko & Kaylin M. Weiler & Jacob T. E. Spana & Alan W. Weimer, 2020. "Reversible Molten Catalytic Methane Cracking Applied to Commercial Solar-Thermal Receivers," Energies, MDPI, vol. 13(23), pages 1-21, November.
    7. Xiang, Xiwang & Ma, Minda & Ma, Xin & Chen, Liming & Cai, Weiguang & Feng, Wei & Ma, Zhili, 2022. "Historical decarbonization of global commercial building operations in the 21st century," Applied Energy, Elsevier, vol. 322(C).
    8. Lilley, Drew & Lau, Jonathan & Dames, Chris & Kaur, Sumanjeet & Prasher, Ravi, 2021. "Impact of size and thermal gradient on supercooling of phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 290(C).
    9. Amy, Caleb & Pishahang, Mehdi & Kelsall, Colin & LaPotin, Alina & Brankovic, Sonja & Yee, Shannon & Henry, Asegun, 2022. "Thermal energy grid storage: Liquid containment and pumping above 2000 °C," Applied Energy, Elsevier, vol. 308(C).
    10. Eikeland, Odin Foldvik & Kelsall, Colin C. & Buznitsky, Kyle & Verma, Shomik & Bianchi, Filippo Maria & Chiesa, Matteo & Henry, Asegun, 2023. "Power availability of PV plus thermal batteries in real-world electric power grids," Applied Energy, Elsevier, vol. 348(C).
    11. Bogdan Diaconu & Mihai Cruceru & Lucica Anghelescu & Cristinel Racoceanu & Cristinel Popescu & Marian Ionescu & Adriana Tudorache, 2023. "Latent Heat Storage Systems for Thermal Management of Electric Vehicle Batteries: Thermal Performance Enhancement and Modulation of the Phase Transition Process Dynamics: A Literature Review," Energies, MDPI, vol. 16(6), pages 1-46, March.
    12. Matthias Pazold & Jan Radon & Matthias Kersken & Hartwig Künzel & Florian Antretter & Herbert Sinnesbichler, 2023. "Development and Verification of Novel Building Integrated Thermal Storage System Models," Energies, MDPI, vol. 16(6), pages 1-21, March.
    13. Shiyang Teng & Yong-Qiang Feng & Tzu-Chen Hung & Huan Xi, 2021. "Multi-Objective Optimization and Fluid Selection of Different Cogeneration of Heat and Power Systems Based on Organic Rankine Cycle," Energies, MDPI, vol. 14(16), pages 1-22, August.
    14. Shanks, Michael & Shoalmire, Charles M. & Deckard, Michael & Gohil, Karan N. & Lewis, Henry & Lin, Darin & Shamberger, Patrick J. & Jain, Neera, 2022. "Design of spatial variability in thermal energy storage modules for enhanced power density," Applied Energy, Elsevier, vol. 314(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:5:y:2020:i:9:d:10.1038_s41560-020-0675-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.