IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v4y2019i6d10.1038_s41560-019-0388-0.html
   My bibliography  Save this article

Building aqueous K-ion batteries for energy storage

Author

Listed:
  • Liwei Jiang

    (Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yaxiang Lu

    (Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences)

  • Chenglong Zhao

    (Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lilu Liu

    (Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences)

  • Jienan Zhang

    (Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences)

  • Qiangqiang Zhang

    (Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xing Shen

    (Institute of Process Engineering, Chinese Academy of Sciences)

  • Junmei Zhao

    (Institute of Process Engineering, Chinese Academy of Sciences)

  • Xiqian Yu

    (Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences)

  • Hong Li

    (Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
    Yangtze River Delta Physics Research Center Co. Ltd)

  • Xuejie Huang

    (Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences)

  • Liquan Chen

    (Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences)

  • Yong-Sheng Hu

    (Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Yangtze River Delta Physics Research Center Co. Ltd)

Abstract

Aqueous K-ion batteries (AKIBs) are promising candidates for grid-scale energy storage due to their inherent safety and low cost. However, full AKIBs have not yet been reported due to the limited availability of suitable electrodes and electrolytes. Here we propose an AKIB system consisting of an Fe-substituted Mn-rich Prussian blue KxFeyMn1 − y[Fe(CN)6]w·zH2O cathode, an organic 3,4,9,10-perylenetetracarboxylic diimide anode and a 22 M KCF3SO3 water-in-salt electrolyte. The cathode achieves 70% capacity retention at 100 C and a lifespan of over 10,000 cycles due to the mitigation of phase transitions by Fe substitution. Meanwhile, the electrolyte can help decrease the dissolution of both electrodes owing to the lack of free water. The AKIB exhibits a high energy density of 80 Wh kg−1 and can operate well at rates of 0.1–20 C and over a wide temperature range (−20 to 60 °C). We believe that our demonstration could pave the way for practical applications of AKIBs for grid-scale energy storage.

Suggested Citation

  • Liwei Jiang & Yaxiang Lu & Chenglong Zhao & Lilu Liu & Jienan Zhang & Qiangqiang Zhang & Xing Shen & Junmei Zhao & Xiqian Yu & Hong Li & Xuejie Huang & Liquan Chen & Yong-Sheng Hu, 2019. "Building aqueous K-ion batteries for energy storage," Nature Energy, Nature, vol. 4(6), pages 495-503, June.
  • Handle: RePEc:nat:natene:v:4:y:2019:i:6:d:10.1038_s41560-019-0388-0
    DOI: 10.1038/s41560-019-0388-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-019-0388-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-019-0388-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songshan Bi & Shuai Wang & Fang Yue & Zhiwei Tie & Zhiqiang Niu, 2021. "A rechargeable aqueous manganese-ion battery based on intercalation chemistry," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Han Wu & Junnan Hao & Yunling Jiang & Yiran Jiao & Jiahao Liu & Xin Xu & Kenneth Davey & Chunsheng Wang & Shi-Zhang Qiao, 2024. "Alkaline-based aqueous sodium-ion batteries for large-scale energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Alves, Ana Cristina & Gong, Xue & Li, Mingjiang, 2023. "The BRI: A new development cooperation paradigm in the making? Unpacking China’s infrastructure cooperation along the Maritime Silk Road," World Development, Elsevier, vol. 169(C).
    4. Xia, Liangyu & Zhao, Xingyu & Wu, Yao, 2023. "Status, disadvantages, and prospects of oil shale in China: An economic perspective," Energy Policy, Elsevier, vol. 183(C).
    5. Xiangyong Zhang & Hua Wei & Shizhen Li & Baohui Ren & Jingjing Jiang & Guangmeng Qu & Haiming Lv & Guojin Liang & Guangming Chen & Chunyi Zhi & Hongfei Li & Zhuoxin Liu, 2023. "Manipulating coordination environment for a high-voltage aqueous copper-chlorine battery," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Abdelaziz, Fouad Ben & Maddah, Bacel & Flamand, Tülay & Azar, Jimmy, 2024. "Store-Wide space planning balancing impulse and convenience," European Journal of Operational Research, Elsevier, vol. 312(1), pages 211-226.
    7. Zhu, Zongyuan & Xu, Zhen, 2020. "The rational design of biomass-derived carbon materials towards next-generation energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Tiezhu Xu & Zhenming Xu & Tengyu Yao & Miaoran Zhang & Duo Chen & Xiaogang Zhang & Laifa Shen, 2023. "Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Huanxin Li & Yi Gong & Haihui Zhou & Jing Li & Kai Yang & Boyang Mao & Jincan Zhang & Yan Shi & Jinhai Deng & Mingxuan Mao & Zhongyuan Huang & Shuqiang Jiao & Yafei Kuang & Yunlong Zhao & Shenglian Lu, 2023. "Ampere-hour-scale soft-package potassium-ion hybrid capacitors enabling 6-minute fast-charging," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Chao-Yu Li & Ming Chen & Shuai Liu & Xinyao Lu & Jinhui Meng & Jiawei Yan & Héctor D. Abruña & Guang Feng & Tianquan Lian, 2022. "Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Zishuai Zhang & Yilong Zhu & Miao Yu & Yan Jiao & Yan Huang, 2022. "Development of long lifespan high-energy aqueous organic||iodine rechargeable batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Mohammad Ali Rajaeifar & Marco Raugei & Bernhard Steubing & Anthony Hartwell & Paul A. Anderson & Oliver Heidrich, 2021. "Life cycle assessment of lithium‐ion battery recycling using pyrometallurgical technologies," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1560-1571, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:6:d:10.1038_s41560-019-0388-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.