IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v3y2018i12d10.1038_s41560-018-0268-z.html
   My bibliography  Save this article

Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers

Author

Listed:
  • Wenbo Gao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jianping Guo

    (Chinese Academy of Sciences
    Collaborative Innovation Center of Chemistry for Energy Materials)

  • Peikun Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qianru Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Fei Chang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qijun Pei

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Weijin Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lin Liu

    (Chinese Academy of Sciences)

  • Ping Chen

    (Chinese Academy of Sciences
    Collaborative Innovation Center of Chemistry for Energy Materials)

Abstract

Ammonia is a promising carbon-free energy carrier, but is currently synthesized industrially under harsh conditions. Synthesizing ammonia using lower temperatures and pressures could therefore improve its prospects as a chemical means to store and transport energy. Here we report that alkali and alkaline earth metal imides function as nitrogen carriers that mediate ammonia production via a two-step chemical looping process operating under mild conditions. Nitrogen is first fixed through the reduction of N2 by alkali or alkaline earth metal hydrides to form imides and, subsequently, the imides are hydrogenated to produce NH3 and regenerate the metal hydrides. The oxidation state of hydrogen therefore switches between −1 (hydride), 0 (H2) and +1 (imide and NH3). Late 3d metals accelerate the reaction rates of both steps. The chemical loop mediated by BaNH and catalysed by Ni produces NH3 at 100 °C and atmospheric pressure.

Suggested Citation

  • Wenbo Gao & Jianping Guo & Peikun Wang & Qianru Wang & Fei Chang & Qijun Pei & Weijin Zhang & Lin Liu & Ping Chen, 2018. "Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers," Nature Energy, Nature, vol. 3(12), pages 1067-1075, December.
  • Handle: RePEc:nat:natene:v:3:y:2018:i:12:d:10.1038_s41560-018-0268-z
    DOI: 10.1038/s41560-018-0268-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-018-0268-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-018-0268-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Ali Yousefi Rizi & Donghoon Shin, 2022. "Green Hydrogen Production Technologies from Ammonia Cracking," Energies, MDPI, vol. 15(21), pages 1-49, November.
    2. Wang, Xiaoyu & Su, Mingze & Zhao, Haibo, 2021. "Process design and exergy cost analysis of a chemical looping ammonia generation system using AlN/Al2O3 as a nitrogen carrier," Energy, Elsevier, vol. 230(C).
    3. Xiong, Chuhao & Wu, Ye & Feng, Mingqian & Fang, Jing & Liu, Dong & Shen, Laihong & Argyle, Morris D. & A. M. Gasem, Khaled & Fan, Maohong, 2022. "High thermal stability Si-Al based N-carrier for efficient and stable chemical looping ammonia generation," Applied Energy, Elsevier, vol. 323(C).
    4. Huize Wang & Ranga Rohit Seemakurthi & Gao-Feng Chen & Volker Strauss & Oleksandr Savateev & Guangtong Hai & Liangxin Ding & Núria López & Haihui Wang & Markus Antonietti, 2023. "Laser-induced nitrogen fixation," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. S Paramanantham, SalaiSargunan & Brigljević, Boris & Ni, Aleksey & Nagulapati, Vijay Mohan & Han, Gao-Feng & Baek, Jong-Beom & Mikulčić, Hrvoje & Lim, Hankwon, 2023. "Numerical simulation of ball milling reactor for novel ammonia synthesis under ambient conditions," Energy, Elsevier, vol. 263(PC).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:3:y:2018:i:12:d:10.1038_s41560-018-0268-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.