IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v1y2016i7d10.1038_nenergy.2016.90.html
   My bibliography  Save this article

Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes

Author

Listed:
  • Anthony P. Straub

    (Yale University)

  • Ngai Yin Yip

    (Columbia University)

  • Shihong Lin

    (Vanderbilt University)

  • Jongho Lee

    (Yale University)

  • Menachem Elimelech

    (Yale University)

Abstract

Low-grade heat from sources below 100 ∘C offers a vast quantity of energy. The ability to extract this energy, however, is limited with existing technologies as they are not well-suited to harvest energy from sources with variable heat output or with a small temperature difference between the source and the environment. Here, we present a process for extracting energy from low-grade heat sources utilizing hydrophobic, nanoporous membranes that trap air within their pores when submerged in a liquid. By driving a thermo-osmotic vapour flux across the membrane from a hot reservoir to a pressurized cold reservoir, heat energy can be converted to mechanical work. We demonstrate operation of air-trapping membranes under hydraulic pressures up to 13 bar, show that power densities as high as 3.53 ± 0.29 W m−2 are achievable with a 60 ∘C heat source and a 20 ∘C heat sink, and estimate the efficiency of a full-scale system. The results demonstrate a promising process to harvest energy from low-temperature differences (

Suggested Citation

  • Anthony P. Straub & Ngai Yin Yip & Shihong Lin & Jongho Lee & Menachem Elimelech, 2016. "Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes," Nature Energy, Nature, vol. 1(7), pages 1-6, July.
  • Handle: RePEc:nat:natene:v:1:y:2016:i:7:d:10.1038_nenergy.2016.90
    DOI: 10.1038/nenergy.2016.90
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nenergy201690
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nenergy.2016.90?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yu & Li, Yanxiang & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang, 2022. "Development of a membrane-less microfluidic thermally regenerative ammonia-based battery towards small-scale low-grade thermal energy recovery," Applied Energy, Elsevier, vol. 326(C).
    2. Long, Rui & Zhao, Yanan & Luo, Zuoqing & Li, Lei & Liu, Zhichun & Liu, Wei, 2020. "Alternative thermal regenerative osmotic heat engines for low-grade heat harvesting," Energy, Elsevier, vol. 195(C).
    3. Zadeh, Ali Etemad & Touati, Khaled & Mulligan, Catherine N. & McCutcheon, Jeffrey R. & Rahaman, Md. Saifur, 2022. "Closed-loop pressure retarded osmosis draw solutions and their regeneration processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Xu, Haowei & Zhang, Qiang & Yi, Longbing & Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Hu, Haoyang & Sun, Peng & Tan, Xiaojian & Liu, Guo-qiang & Song, Kun & Jiang, Jun, 2022. "High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process," Applied Energy, Elsevier, vol. 326(C).
    5. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
    6. Chiolerio, Alessandro & Garofalo, Erik & Mattiussi, Fabio & Crepaldi, Marco & Fortunato, Giuseppe & Iovieno, Michele, 2020. "Waste heat to power conversion by means of thermomagnetic hydrodynamic energy harvester," Applied Energy, Elsevier, vol. 277(C).
    7. Weipeng Xian & Xiuhui Zuo & Changjia Zhu & Qing Guo & Qing-Wei Meng & Xincheng Zhu & Sai Wang & Shengqian Ma & Qi Sun, 2022. "Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Zhang, Zeyu & Hanrahan, Brendan & Shi, Chuan & Khaligh, Alireza, 2018. "Management and storage of energy converted via a pyroelectric heat engine," Applied Energy, Elsevier, vol. 230(C), pages 1326-1331.
    9. Tian, Tong & Wang, Xinyue & Liu, Yang & Yang, Xuan & Sun, Bo & Li, Ji, 2023. "Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation," Applied Energy, Elsevier, vol. 348(C).
    10. Vicari, Fabrizio & Galia, Alessandro & Scialdone, Onofrio, 2021. "Development of a membrane-less microfluidic thermally regenerative ammonia battery," Energy, Elsevier, vol. 225(C).
    11. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Luo, Qizhao & Pei, Junxian & Yun, Panfeng & Hu, Xuejiao & Cao, Bin & Shan, Kunpeng & Tang, Bin & Huang, Kaiming & Chen, Aofei & Huang, Lu & Huang, Zhi & Jiang, Haifeng, 2023. "Simultaneous water production and electricity generation driven by synergistic temperature-salinity gradient in thermo-osmosis process," Applied Energy, Elsevier, vol. 351(C).
    13. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2020. "Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery," Applied Energy, Elsevier, vol. 261(C).
    14. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    15. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    16. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:1:y:2016:i:7:d:10.1038_nenergy.2016.90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.