IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8760.html
   My bibliography  Save this article

Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge

Author

Listed:
  • Guangmin Zhou

    (Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Mail Stop: C2200, Austin, Texas 78712, USA.)

  • Eunsu Paek

    (The University of Texas at Austin, 204 East Dean Keeton Street, Mail Stop: C2200, Austin, Texas 78712, USA.)

  • Gyeong S. Hwang

    (The University of Texas at Austin, 204 East Dean Keeton Street, Mail Stop: C2200, Austin, Texas 78712, USA.)

  • Arumugam Manthiram

    (Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Mail Stop: C2200, Austin, Texas 78712, USA.)

Abstract

Lithium–sulphur batteries with a high theoretical energy density are regarded as promising energy storage devices for electric vehicles and large-scale electricity storage. However, the low active material utilization, low sulphur loading and poor cycling stability restrict their practical applications. Herein, we present an effective strategy to obtain Li/polysulphide batteries with high-energy density and long-cyclic life using three-dimensional nitrogen/sulphur codoped graphene sponge electrodes. The nitrogen/sulphur codoped graphene sponge electrode provides enough space for a high sulphur loading, facilitates fast charge transfer and better immobilization of polysulphide ions. The hetero-doped nitrogen/sulphur sites are demonstrated to show strong binding energy and be capable of anchoring polysulphides based on first-principles calculations. As a result, a high specific capacity of 1,200 mAh g−1 at 0.2C rate, a high-rate capacity of 430 mAh g−1 at 2C rate and excellent cycling stability for 500 cycles with ∼0.078% capacity decay per cycle are achieved.

Suggested Citation

  • Guangmin Zhou & Eunsu Paek & Gyeong S. Hwang & Arumugam Manthiram, 2015. "Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8760
    DOI: 10.1038/ncomms8760
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8760
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8760?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Capkova, Dominika & Knap, Vaclav & Fedorkova, Andrea Strakova & Stroe, Daniel-Ioan, 2023. "Investigation of the temperature and DOD effect on the performance-degradation behavior of lithium–sulfur pouch cells during calendar aging," Applied Energy, Elsevier, vol. 332(C).
    2. Lee, Won Yeol & Jin, En Mei & Cho, Jung Sang & Kang, Dong-Won & Jin, Bo & Jeong, Sang Mun, 2020. "Freestanding flexible multilayered Sulfur–Carbon nanotubes for Lithium–Sulfur battery cathodes," Energy, Elsevier, vol. 212(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.