IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44956-2.html
   My bibliography  Save this article

A multiplexed, confinable CRISPR/Cas9 gene drive can propagate in caged Aedes aegypti populations

Author

Listed:
  • Michelle A. E. Anderson

    (Arthropod Genetics, The Pirbright Institute
    University of York, Wentworth Way)

  • Estela Gonzalez

    (Arthropod Genetics, The Pirbright Institute
    Animal and Plant Health Agency, Woodham Lane, Addlestone)

  • Matthew P. Edgington

    (Arthropod Genetics, The Pirbright Institute
    University of York, Wentworth Way)

  • Joshua X. D. Ang

    (Arthropod Genetics, The Pirbright Institute
    University of York, Wentworth Way)

  • Deepak-Kumar Purusothaman

    (Arthropod Genetics, The Pirbright Institute
    MRC-University of Glasgow Centre for Virus Research)

  • Lewis Shackleford

    (Arthropod Genetics, The Pirbright Institute
    University of York, Wentworth Way)

  • Katherine Nevard

    (Arthropod Genetics, The Pirbright Institute)

  • Sebald A. N. Verkuijl

    (Arthropod Genetics, The Pirbright Institute
    University of Oxford)

  • Timothy Harvey-Samuel

    (Arthropod Genetics, The Pirbright Institute)

  • Philip T. Leftwich

    (Arthropod Genetics, The Pirbright Institute
    University of East Anglia, Norwich Research Park, Norwich)

  • Kevin Esvelt

    (Massachusetts Institute of Technology)

  • Luke Alphey

    (Arthropod Genetics, The Pirbright Institute
    University of York, Wentworth Way)

Abstract

Aedes aegypti is the main vector of several major pathogens including dengue, Zika and chikungunya viruses. Classical mosquito control strategies utilizing insecticides are threatened by rising resistance. This has stimulated interest in new genetic systems such as gene drivesHere, we test the regulatory sequences from the Ae. aegypti benign gonial cell neoplasm (bgcn) homolog to express Cas9 and a separate multiplexing sgRNA-expressing cassette inserted into the Ae. aegypti kynurenine 3-monooxygenase (kmo) gene. When combined, these two elements provide highly effective germline cutting at the kmo locus and act as a gene drive. Our target genetic element drives through a cage trial population such that carrier frequency of the element increases from 50% to up to 89% of the population despite significant fitness costs to kmo insertions. Deep sequencing suggests that the multiplexing design could mitigate resistance allele formation in our gene drive system.

Suggested Citation

  • Michelle A. E. Anderson & Estela Gonzalez & Matthew P. Edgington & Joshua X. D. Ang & Deepak-Kumar Purusothaman & Lewis Shackleford & Katherine Nevard & Sebald A. N. Verkuijl & Timothy Harvey-Samuel &, 2024. "A multiplexed, confinable CRISPR/Cas9 gene drive can propagate in caged Aedes aegypti populations," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44956-2
    DOI: 10.1038/s41467-024-44956-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44956-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44956-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Víctor López Del Amo & Alena L. Bishop & Héctor M. Sánchez C. & Jared B. Bennett & Xuechun Feng & John M. Marshall & Ethan Bier & Valentino M. Gantz, 2020. "A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Maciej Maselko & Nathan Feltman & Ambuj Upadhyay & Amanda Hayward & Siba Das & Nathan Myslicki & Aidan J. Peterson & Michael B. O’Connor & Michael J. Smanski, 2020. "Engineering multiple species-like genetic incompatibilities in insects," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    5. Hannah A. Grunwald & Valentino M. Gantz & Gunnar Poplawski & Xiang-Ru S. Xu & Ethan Bier & Kimberly L. Cooper, 2019. "Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline," Nature, Nature, vol. 566(7742), pages 105-109, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alena L. Bishop & Víctor López Del Amo & Emily M. Okamoto & Zsolt Bodai & Alexis C. Komor & Valentino M. Gantz, 2022. "Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Sebald A. N. Verkuijl & Estela Gonzalez & Ming Li & Joshua X. D. Ang & Nikolay P. Kandul & Michelle A. E. Anderson & Omar S. Akbari & Michael B. Bonsall & Luke Alphey, 2022. "A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    4. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    5. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    6. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    8. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    11. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    13. repec:cup:judgdm:v:16:y:2021:i:1:p:201-237 is not listed on IDEAS
    14. C. Gabriel Hidalgo Pizango & Eurídice N. Honorio Coronado & Jhon del Águila-Pasquel & Gerardo Flores Llampazo & Johan de Jong & César J. Córdova Oroche & José M. Reyna Huaymacari & Steve J. Carver & D, 2022. "Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests," Nature Sustainability, Nature, vol. 5(6), pages 479-487, June.
    15. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    16. Szefer Elena & Graham Jinko & Lu Donghuan & Beg Mirza Faisal & Nathoo Farouk, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 349-365, December.
    17. Julien Collet & Samantha C Patrick & Henri Weimerskirch, 2017. "A comparative analysis of the behavioral response to fishing boats in two albatross species," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(5), pages 1337-1347.
    18. Sean Coogan & Zhixian Sui & David Raubenheimer, 2018. "Gluttony and guilt: monthly trends in internet search query data are comparable with national-level energy intake and dieting behavior," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    19. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    20. Katrijn Delaruelle, 2023. "Migration-related inequalities in loneliness across age groups: a cross-national comparative study in Europe," European Journal of Ageing, Springer, vol. 20(1), pages 1-17, December.
    21. Christos C Ioannou & Luis Arrochela Braga Carvalho & Chessy Budleigh & Graeme D Ruxton, 2023. "Virtual prey with Lévy motion are preferentially attacked by predatory fish," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(4), pages 695-699.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44956-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.