IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39446-w.html
   My bibliography  Save this article

Thermally trainable dual network hydrogels

Author

Listed:
  • Shanming Hu

    (Aalto University)

  • Yuhuang Fang

    (Aalto University)

  • Chen Liang

    (Aalto University)

  • Matti Turunen

    (Aalto University)

  • Olli Ikkala

    (Aalto University)

  • Hang Zhang

    (Aalto University)

Abstract

Inspired by biological systems, trainable responsive materials have received burgeoning research interests for future adaptive and intelligent material systems. However, the trainable materials to date typically cannot perform active work, and the training allows only one direction of functionality change. Here, we demonstrate thermally trainable hydrogel systems consisting of two thermoresponsive polymers, where the volumetric response of the system upon phase transitions enhances or decreases through a training process above certain threshold temperature. Positive or negative training of the thermally induced deformations can be achieved, depending on the network design. Importantly, softening, stiffening, or toughening of the hydrogel can be achieved by the training process. We demonstrate trainable hydrogel actuators capable of performing increased active work or implementing an initially impossible task. The reported dual network hydrogels provide a new training strategy that can be leveraged for bio-inspired soft systems such as adaptive artificial muscles or soft robotics.

Suggested Citation

  • Shanming Hu & Yuhuang Fang & Chen Liang & Matti Turunen & Olli Ikkala & Hang Zhang, 2023. "Thermally trainable dual network hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39446-w
    DOI: 10.1038/s41467-023-39446-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39446-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39446-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Feng Wu & Yan Pang & Jinyao Liu, 2020. "Swelling-strengthening hydrogels by embedding with deformable nanobarriers," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. C. Kaspar & B. J. Ravoo & W. G. Wiel & S. V. Wegner & W. H. P. Pernice, 2021. "The rise of intelligent matter," Nature, Nature, vol. 594(7863), pages 345-355, June.
    3. Yunlei Zhang & Weiyi Zhao & Shuanhong Ma & Hui Liu & Xingwei Wang & Xiaoduo Zhao & Bo Yu & Meirong Cai & Feng Zhou, 2022. "Modulus adaptive lubricating prototype inspired by instant muscle hardening mechanism of catfish skin," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Hang Zhang & Hao Zeng & Arri Priimagi & Olli Ikkala, 2019. "Programmable responsive hydrogels inspired by classical conditioning algorithm," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenfei Ai & Kai Hou & Jiaxin Wu & Yue Long & Kai Song, 2024. "Miniaturized and untethered McKibben muscles based on photothermal-induced gas-liquid transformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Kexin Guo & Xuehan Yang & Chao Zhou & Chuang Li, 2024. "Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca Milano & Alessandro Cultrera & Luca Boarino & Luca Callegaro & Carlo Ricciardi, 2023. "Tomography of memory engrams in self-organizing nanowire connectomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Herbert Jaeger & Beatriz Noheda & Wilfred G. Wiel, 2023. "Toward a formal theory for computing machines made out of whatever physics offers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Zhaoqi Gu & Runlin Zhu & Tianci Shen & Lin Dou & Hongjiang Liu & Yifei Liu & Xu Liu & Jia Liu & Songlin Zhuang & Fuxing Gu, 2023. "Autonomous nanorobots with powerful thrust under dry solid-contact conditions by photothermal shock," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Wenbo Li & Huyue Chen & Zhiran Yi & Fuyi Fang & Xinyu Guo & Zhiyuan Wu & Qiuhua Gao & Lei Shao & Jian Xu & Guang Meng & Wenming Zhang, 2023. "Self-vectoring electromagnetic soft robots with high operational dimensionality," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Feng Wu & Yusheng Ren & Wenyan Lv & Xiaobing Liu & Xinyue Wang & Chuhan Wang & Zhenping Cao & Jinyao Liu & Jie Wei & Yan Pang, 2024. "Generating dual structurally and functionally skin-mimicking hydrogels by crosslinking cell-membrane compartments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Jiqiang Wang & Baohu Wu & Peng Wei & Shengtong Sun & Peiyi Wu, 2022. "Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39446-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.