IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40989-1.html
   My bibliography  Save this article

In-memory mechanical computing

Author

Listed:
  • Tie Mei

    (Tsinghua University)

  • Chang Qing Chen

    (Tsinghua University)

Abstract

Mechanical computing requires matter to adapt behavior according to retained knowledge, often through integrated sensing, actuation, and control of deformation. However, inefficient access to mechanical memory and signal propagation limit mechanical computing modules. To overcome this, we developed an in-memory mechanical computing architecture where computing occurs within the interaction network of mechanical memory units. Interactions embedded within data read-write interfaces provided function-complete and neuromorphic computing while reducing data traffic and simplifying data exchange. A reprogrammable mechanical binary neural network and a mechanical self-learning perceptron were demonstrated experimentally in 3D printed mechanical computers, as were all 16 logic gates and truth-table entries that are possible with two inputs and one output. The in-memory mechanical computing architecture enables the design and fabrication of intelligent mechanical systems.

Suggested Citation

  • Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40989-1
    DOI: 10.1038/s41467-023-40989-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40989-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40989-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tie Mei & Zhiqiang Meng & Kejie Zhao & Chang Qing Chen, 2021. "A mechanical metamaterial with reprogrammable logical functions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Mark A. Skylar-Scott & Jochen Mueller & Claas W. Visser & Jennifer A. Lewis, 2019. "Voxelated soft matter via multimaterial multinozzle 3D printing," Nature, Nature, vol. 575(7782), pages 330-335, November.
    3. M. A. A. Hafiz & L. Kosuru & M. I. Younis, 2016. "Microelectromechanical reprogrammable logic device," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    4. Yijie Jiang & Lucia M. Korpas & Jordan R. Raney, 2019. "Bifurcation-based embodied logic and autonomous actuation," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Hiromi Yasuda & Philip R. Buskohl & Andrew Gillman & Todd D. Murphey & Susan Stepney & Richard A. Vaia & Jordan R. Raney, 2021. "Mechanical computing," Nature, Nature, vol. 598(7879), pages 39-48, October.
    6. Tian Chen & Mark Pauly & Pedro M. Reis, 2021. "A reprogrammable mechanical metamaterial with stable memory," Nature, Nature, vol. 589(7842), pages 386-390, January.
    7. Charles El Helou & Benjamin Grossmann & Christopher E. Tabor & Philip R. Buskohl & Ryan L. Harne, 2022. "Mechanical integrated circuit materials," Nature, Nature, vol. 608(7924), pages 699-703, August.
    8. Charles El Helou & Philip R. Buskohl & Christopher E. Tabor & Ryan L. Harne, 2021. "Digital logic gates in soft, conductive mechanical metamaterials," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. C. Kaspar & B. J. Ravoo & W. G. Wiel & S. V. Wegner & W. H. P. Pernice, 2021. "The rise of intelligent matter," Nature, Nature, vol. 594(7863), pages 345-355, June.
    10. Michael Wehner & Ryan L. Truby & Daniel J. Fitzgerald & Bobak Mosadegh & George M. Whitesides & Jennifer A. Lewis & Robert J. Wood, 2016. "An integrated design and fabrication strategy for entirely soft, autonomous robots," Nature, Nature, vol. 536(7617), pages 451-455, August.
    11. Gabriele Librandi & Eleonora Tubaldi & Katia Bertoldi, 2021. "Programming nonreciprocity and reversibility in multistable mechanical metamaterials," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Yuanping Song & Robert M. Panas & Samira Chizari & Lucas A. Shaw & Julie A. Jackson & Jonathan B. Hopkins & Andrew J. Pascall, 2019. "Additively manufacturable micro-mechanical logic gates," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    13. Seungchul Jung & Hyungwoo Lee & Sungmeen Myung & Hyunsoo Kim & Seung Keun Yoon & Soon-Wan Kwon & Yongmin Ju & Minje Kim & Wooseok Yi & Shinhee Han & Baeseong Kwon & Boyoung Seo & Kilho Lee & Gwan-Hyeo, 2022. "A crossbar array of magnetoresistive memory devices for in-memory computing," Nature, Nature, vol. 601(7892), pages 211-216, January.
    14. Gabriele Librandi & Eleonora Tubaldi & Katia Bertoldi, 2021. "Publisher Correction: Programming nonreciprocity and reversibility in multistable mechanical metamaterials," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junghwan Byun & Aniket Pal & Jongkuk Ko & Metin Sitti, 2024. "Integrated mechanical computing for autonomous soft machines," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Tie Mei & Zhiqiang Meng & Kejie Zhao & Chang Qing Chen, 2021. "A mechanical metamaterial with reprogrammable logical functions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Xinyu Hu & Ting Tan & Benlong Wang & Zhimiao Yan, 2023. "A reprogrammable mechanical metamaterial with origami functional-group transformation and ring reconfiguration," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Lei Wu & Damiano Pasini, 2024. "Zero modes activation to reconcile floppiness, rigidity, and multistability into an all-in-one class of reprogrammable metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Xinchen Ni & Haiwen Luan & Jin-Tae Kim & Sam I. Rogge & Yun Bai & Jean Won Kwak & Shangliangzi Liu & Da Som Yang & Shuo Li & Shupeng Li & Zhengwei Li & Yamin Zhang & Changsheng Wu & Xiaoyue Ni & Yongg, 2022. "Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Yaohui Wang & Haitao Ye & Jian He & Qi Ge & Yi Xiong, 2024. "Electrothermally controlled origami fabricated by 4D printing of continuous fiber-reinforced composites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Zhou Hu & Zhibo Wei & Kun Wang & Yan Chen & Rui Zhu & Guoliang Huang & Gengkai Hu, 2023. "Engineering zero modes in transformable mechanical metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    16. Piyush Agarwal & Lisen Huang & Sze Lim & Ranjan Singh, 2022. "Electric-field control of nonlinear THz spintronic emitters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Yunjiang Wang & Xinben Hu & Luhang Cui & Xuan Xiao & Keji Yang & Yongjian Zhu & Haoran Jin, 2024. "Bioinspired handheld time-share driven robot with expandable DoFs," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Hayato Saigo & Makoto Naruse & Kazuya Okamura & Hirokazu Hori & Izumi Ojima, 2019. "Analysis of Soft Robotics Based on the Concept of Category of Mobility," Complexity, Hindawi, vol. 2019, pages 1-12, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40989-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.