IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38879-7.html
   My bibliography  Save this article

Mapping mechanical stress in curved epithelia of designed size and shape

Author

Listed:
  • Ariadna Marín-Llauradó

    (The Barcelona Institute for Science and Technology (BIST))

  • Sohan Kale

    (Virginia Polytechnic Institute and State University
    Virginia Polytechnic Institute and State University)

  • Adam Ouzeri

    (Universitat Politècnica de Catalunya-BarcelonaTech)

  • Tom Golde

    (The Barcelona Institute for Science and Technology (BIST))

  • Raimon Sunyer

    (The Barcelona Institute for Science and Technology (BIST)
    Universitat de Barcelona
    Universitat de Barcelona
    Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN))

  • Alejandro Torres-Sánchez

    (The Barcelona Institute for Science and Technology (BIST)
    Universitat Politècnica de Catalunya-BarcelonaTech
    European Molecular Biology Laboratory (EMBL) Barcelona)

  • Ernest Latorre

    (The Barcelona Institute for Science and Technology (BIST))

  • Manuel Gómez-González

    (The Barcelona Institute for Science and Technology (BIST))

  • Pere Roca-Cusachs

    (The Barcelona Institute for Science and Technology (BIST)
    Universitat de Barcelona)

  • Marino Arroyo

    (The Barcelona Institute for Science and Technology (BIST)
    Universitat Politècnica de Catalunya-BarcelonaTech
    Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE))

  • Xavier Trepat

    (The Barcelona Institute for Science and Technology (BIST)
    Universitat de Barcelona
    Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
    Institució Catalana de Recerca i Estudis Avançats (ICREA))

Abstract

The function of organs such as lungs, kidneys and mammary glands relies on the three-dimensional geometry of their epithelium. To adopt shapes such as spheres, tubes and ellipsoids, epithelia generate mechanical stresses that are generally unknown. Here we engineer curved epithelial monolayers of controlled size and shape and map their state of stress. We design pressurized epithelia with circular, rectangular and ellipsoidal footprints. We develop a computational method, called curved monolayer stress microscopy, to map the stress tensor in these epithelia. This method establishes a correspondence between epithelial shape and mechanical stress without assumptions of material properties. In epithelia with spherical geometry we show that stress weakly increases with areal strain in a size-independent manner. In epithelia with rectangular and ellipsoidal cross-section we find pronounced stress anisotropies that impact cell alignment. Our approach enables a systematic study of how geometry and stress influence epithelial fate and function in three-dimensions.

Suggested Citation

  • Ariadna Marín-Llauradó & Sohan Kale & Adam Ouzeri & Tom Golde & Raimon Sunyer & Alejandro Torres-Sánchez & Ernest Latorre & Manuel Gómez-González & Pere Roca-Cusachs & Marino Arroyo & Xavier Trepat, 2023. "Mapping mechanical stress in curved epithelia of designed size and shape," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38879-7
    DOI: 10.1038/s41467-023-38879-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38879-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38879-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. A. Gudipaty & J. Lindblom & P. D. Loftus & M. J. Redd & K. Edes & C. F. Davey & V. Krishnegowda & J. Rosenblatt, 2017. "Mechanical stretch triggers rapid epithelial cell division through Piezo1," Nature, Nature, vol. 543(7643), pages 118-121, March.
    2. Léo Valon & Ariadna Marín-Llauradó & Thomas Wyatt & Guillaume Charras & Xavier Trepat, 2017. "Optogenetic control of cellular forces and mechanotransduction," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    3. Ernest Latorre & Sohan Kale & Laura Casares & Manuel Gómez-González & Marina Uroz & Léo Valon & Roshna V. Nair & Elena Garreta & Nuria Montserrat & Aránzazu Campo & Benoit Ladoux & Marino Arroyo & Xav, 2018. "Active superelasticity in three-dimensional epithelia of controlled shape," Nature, Nature, vol. 563(7730), pages 203-208, November.
    4. Chii Jou Chan & Maria Costanzo & Teresa Ruiz-Herrero & Gregor Mönke & Ryan J. Petrie & Martin Bergert & Alba Diz-Muñoz & L. Mahadevan & Takashi Hiiragi, 2019. "Hydraulic control of mammalian embryo size and cell fate," Nature, Nature, vol. 571(7763), pages 112-116, July.
    5. Werner Risau, 1997. "Mechanisms of angiogenesis," Nature, Nature, vol. 386(6626), pages 671-674, April.
    6. Guillermo Martínez-Ara & Núria Taberner & Mami Takayama & Elissavet Sandaltzopoulou & Casandra E. Villava & Miquel Bosch-Padrós & Nozomu Takata & Xavier Trepat & Mototsugu Eiraku & Miki Ebisuya, 2022. "Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Emiliano Izquierdo & Theresa Quinkler & Stefano De Renzis, 2018. "Guided morphogenesis through optogenetic activation of Rho signalling during early Drosophila embryogenesis," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    8. Andreas Bauer & Magdalena Prechová & Lena Fischer & Ingo Thievessen & Martin Gregor & Ben Fabry, 2021. "pyTFM: A tool for traction force and monolayer stress microscopy," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-17, June.
    9. Robert W. Style & Callen Hyland & Rostislav Boltyanskiy & John S. Wettlaufer & Eric R. Dufresne, 2013. "Surface tension and contact with soft elastic solids," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    10. Laurent Pieuchot & Julie Marteau & Alain Guignandon & Thomas Dos Santos & Isabelle Brigaud & Pierre-François Chauvy & Thomas Cloatre & Arnaud Ponche & Tatiana Petithory & Pablo Rougerie & Maxime Vassa, 2018. "Curvotaxis directs cell migration through cell-scale curvature landscapes," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    11. Thuan Beng Saw & Amin Doostmohammadi & Vincent Nier & Leyla Kocgozlu & Sumesh Thampi & Yusuke Toyama & Philippe Marcq & Chwee Teck Lim & Julia M. Yeomans & Benoit Ladoux, 2017. "Topological defects in epithelia govern cell death and extrusion," Nature, Nature, vol. 544(7649), pages 212-216, April.
    12. Aleksandr Vasilyev & Yan Liu & Sudha Mudumana & Steve Mangos & Pui-Ying Lam & Arindam Majumdar & Jinhua Zhao & Kar-Lai Poon & Igor Kondrychyn & Vladimir Korzh & Iain A Drummond, 2009. "Collective Cell Migration Drives Morphogenesis of the Kidney Nephron," PLOS Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
    13. Claire Bertet & Lawrence Sulak & Thomas Lecuit, 2004. "Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation," Nature, Nature, vol. 429(6992), pages 667-671, June.
    14. Claudia G. Vasquez & Vipul T. Vachharajani & Carlos Garzon-Coral & Alexander R. Dunn, 2021. "Physical basis for the determination of lumen shape in a simple epithelium," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Ikbal Choudhury & Yizeng Li & Panagiotis Mistriotis & Ana Carina N. Vasconcelos & Eryn E. Dixon & Jing Yang & Morgan Benson & Debonil Maity & Rebecca Walker & Leigha Martin & Fatima Koroma & , 2022. "Kidney epithelial cells are active mechano-biological fluid pumps," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Gawoon Shim & Isaac B. Breinyn & Alejandro Martínez-Calvo & Sameeksha Rao & Daniel J. Cohen, 2024. "Bioelectric stimulation controls tissue shape and size," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Hannah J. Gustafson & Nikolas Claussen & Stefano Renzis & Sebastian J. Streichan, 2022. "Patterned mechanical feedback establishes a global myosin gradient," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Kei Yamamoto & Haruko Miura & Motohiko Ishida & Yusuke Mii & Noriyuki Kinoshita & Shinji Takada & Naoto Ueno & Satoshi Sawai & Yohei Kondo & Kazuhiro Aoki, 2021. "Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Timo N. Kohler & Joachim Jonghe & Anna L. Ellermann & Ayaka Yanagida & Michael Herger & Erin M. Slatery & Antonia Weberling & Clara Munger & Katrin Fischer & Carla Mulas & Alex Winkel & Connor Ross & , 2023. "Plakoglobin is a mechanoresponsive regulator of naive pluripotency," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Julia Eckert & Benoît Ladoux & René-Marc Mège & Luca Giomi & Thomas Schmidt, 2023. "Hexanematic crossover in epithelial monolayers depends on cell adhesion and cell density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Tom Brandstätter & David B. Brückner & Yu Long Han & Ricard Alert & Ming Guo & Chase P. Broedersz, 2023. "Curvature induces active velocity waves in rotating spherical tissues," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Céline Dinet & Alejandro Torres-Sánchez & Roberta Lanfranco & Lorenzo Michele & Marino Arroyo & Margarita Staykova, 2023. "Patterning and dynamics of membrane adhesion under hydraulic stress," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Shun Li & Zong-Yuan Liu & Hao Li & Sijia Zhou & Jiaying Liu & Ningwei Sun & Kai-Fu Yang & Vanessa Dougados & Thomas Mangeat & Karine Belguise & Xi-Qiao Feng & Yiyao Liu & Xiaobo Wang, 2024. "Basal actomyosin pulses expand epithelium coordinating cell flattening and tissue elongation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Sorosh Amiri & Camelia Muresan & Xingbo Shang & Clotilde Huet-Calderwood & Martin A. Schwartz & David A. Calderwood & Michael Murrell, 2023. "Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Guillermo Martínez-Ara & Núria Taberner & Mami Takayama & Elissavet Sandaltzopoulou & Casandra E. Villava & Miquel Bosch-Padrós & Nozomu Takata & Xavier Trepat & Mototsugu Eiraku & Miki Ebisuya, 2022. "Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Daniel Sánchez-Gutiérrez & Aurora Sáez & Alberto Pascual & Luis M Escudero, 2013. "Topological Progression in Proliferating Epithelia Is Driven by a Unique Variation in Polygon Distribution," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-8, November.
    13. Yuqi Zhang & Yizeng Li & Keyata N. Thompson & Konstantin Stoletov & Qinling Yuan & Kaustav Bera & Se Jong Lee & Runchen Zhao & Alexander Kiepas & Yao Wang & Panagiotis Mistriotis & Selma A. Serra & Jo, 2022. "Polarized NHE1 and SWELL1 regulate migration direction, efficiency and metastasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Sijia Zhou & Peng Li & Jiaying Liu & Juan Liao & Hao Li & Lin Chen & Zhihua Li & Qiongyu Guo & Karine Belguise & Bin Yi & Xiaobo Wang, 2022. "Two Rac1 pools integrate the direction and coordination of collective cell migration," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    15. K. Sri-Ranjan & J. L. Sanchez-Alonso & P. Swiatlowska & S. Rothery & P. Novak & S. Gerlach & D. Koeninger & B. Hoffmann & R. Merkel & M. M. Stevens & S. X. Sun & J. Gorelik & Vania M. M. Braga, 2022. "Intrinsic cell rheology drives junction maturation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    16. Jiu-Tao Hang & Yu Kang & Guang-Kui Xu & Huajian Gao, 2021. "A hierarchical cellular structural model to unravel the universal power-law rheological behavior of living cells," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    17. Hiroyuki Uechi & Kazuki Fukushima & Ryota Shirasawa & Sayaka Sekine & Erina Kuranaga, 2022. "Inhibition of negative feedback for persistent epithelial cell–cell junction contraction by p21-activated kinase 3," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Guénaël Cabanes & Ellen van Wilgenburg & Madeleine Beekman & Tanya Latty, 2015. "Ants build transportation networks that optimize cost and efficiency at the expense of robustness," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(1), pages 223-231.
    19. Adrien Méry & Artur Ruppel & Jean Revilloud & Martial Balland & Giovanni Cappello & Thomas Boudou, 2023. "Light-driven biological actuators to probe the rheology of 3D microtissues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Antonio Lamura & Adriano Tiribocchi, 2021. "Shearing Effects on the Phase Coarsening of Binary Mixtures Using the Active Model B," Mathematics, MDPI, vol. 9(23), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38879-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.