IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v543y2017i7643d10.1038_nature21407.html
   My bibliography  Save this article

Mechanical stretch triggers rapid epithelial cell division through Piezo1

Author

Listed:
  • S. A. Gudipaty

    (Huntsman Cancer Institute, University of Utah)

  • J. Lindblom

    (Huntsman Cancer Institute, University of Utah)

  • P. D. Loftus

    (Huntsman Cancer Institute, University of Utah)

  • M. J. Redd

    (Huntsman Cancer Institute, University of Utah)

  • K. Edes

    (Huntsman Cancer Institute, University of Utah)

  • C. F. Davey

    (Huntsman Cancer Institute, University of Utah)

  • V. Krishnegowda

    (Huntsman Cancer Institute, University of Utah)

  • J. Rosenblatt

    (Huntsman Cancer Institute, University of Utah)

Abstract

The stretch-activated channel Piezo1 controls homeostatic epithelial cell numbers by activating cells to divide rapidly when under stretch strain from low density, and by activating cells to extrude and die when cells are under crowding strain.

Suggested Citation

  • S. A. Gudipaty & J. Lindblom & P. D. Loftus & M. J. Redd & K. Edes & C. F. Davey & V. Krishnegowda & J. Rosenblatt, 2017. "Mechanical stretch triggers rapid epithelial cell division through Piezo1," Nature, Nature, vol. 543(7643), pages 118-121, March.
  • Handle: RePEc:nat:nature:v:543:y:2017:i:7643:d:10.1038_nature21407
    DOI: 10.1038/nature21407
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature21407
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature21407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. Sri-Ranjan & J. L. Sanchez-Alonso & P. Swiatlowska & S. Rothery & P. Novak & S. Gerlach & D. Koeninger & B. Hoffmann & R. Merkel & M. M. Stevens & S. X. Sun & J. Gorelik & Vania M. M. Braga, 2022. "Intrinsic cell rheology drives junction maturation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Manuela Völkner & Felix Wagner & Lisa Maria Steinheuer & Madalena Carido & Thomas Kurth & Ali Yazbeck & Jana Schor & Stephanie Wieneke & Lynn J. A. Ebner & Claudia Toro Runzer & David Taborsky & Katja, 2022. "HBEGF-TNF induce a complex outer retinal pathology with photoreceptor cell extrusion in human organoids," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    3. Ariadna Marín-Llauradó & Sohan Kale & Adam Ouzeri & Tom Golde & Raimon Sunyer & Alejandro Torres-Sánchez & Ernest Latorre & Manuel Gómez-González & Pere Roca-Cusachs & Marino Arroyo & Xavier Trepat, 2023. "Mapping mechanical stress in curved epithelia of designed size and shape," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Sine Yaganoglu & Konstantinos Kalyviotis & Christina Vagena-Pantoula & Dörthe Jülich & Benjamin M. Gaub & Maaike Welling & Tatiana Lopes & Dariusz Lachowski & See Swee Tang & Armando Del Rio Hernandez, 2023. "Highly specific and non-invasive imaging of Piezo1-dependent activity across scales using GenEPi," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Mohammad Ikbal Choudhury & Yizeng Li & Panagiotis Mistriotis & Ana Carina N. Vasconcelos & Eryn E. Dixon & Jing Yang & Morgan Benson & Debonil Maity & Rebecca Walker & Leigha Martin & Fatima Koroma & , 2022. "Kidney epithelial cells are active mechano-biological fluid pumps," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Yingying Ye & Mohammad Barghouth & Haiqiang Dou & Cheng Luan & Yongzhi Wang & Alexandros Karagiannopoulos & Xiaoping Jiang & Ulrika Krus & Malin Fex & Quan Zhang & Lena Eliasson & Patrik Rorsman & Enm, 2022. "A critical role of the mechanosensor PIEZO1 in glucose-induced insulin secretion in pancreatic β-cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Timo N. Kohler & Joachim Jonghe & Anna L. Ellermann & Ayaka Yanagida & Michael Herger & Erin M. Slatery & Antonia Weberling & Clara Munger & Katrin Fischer & Carla Mulas & Alex Winkel & Connor Ross & , 2023. "Plakoglobin is a mechanoresponsive regulator of naive pluripotency," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Nathalia G. Amado & Elena D. Nosyreva & David Thompson & Thomas J. Egeland & Osita W. Ogujiofor & Michelle Yang & Alexandria N. Fusco & Niccolo Passoni & Jeremy Mathews & Brandi Cantarel & Linda A. Ba, 2024. "PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:543:y:2017:i:7643:d:10.1038_nature21407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.