IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31252-0.html
   My bibliography  Save this article

Inhibition of negative feedback for persistent epithelial cell–cell junction contraction by p21-activated kinase 3

Author

Listed:
  • Hiroyuki Uechi

    (Tohoku University
    Max Planck Institute of Molecular Cell Biology and Genetics)

  • Kazuki Fukushima

    (Tohoku University)

  • Ryota Shirasawa

    (Tohoku University)

  • Sayaka Sekine

    (Tohoku University)

  • Erina Kuranaga

    (Tohoku University)

Abstract

Actin-mediated mechanical forces are central drivers of cellular dynamics. They generate protrusive and contractile dynamics, the latter of which are induced in concert with myosin II bundled at the site of contraction. These dynamics emerge concomitantly in tissues and even each cell; thus, the tight regulation of such bidirectional forces is important for proper cellular deformation. Here, we show that contractile dynamics can eventually disturb cell–cell junction contraction in the absence of p21-activated kinase 3 (Pak3). Upon Pak3 depletion, contractility induces the formation of abnormal actin protrusions at the shortening junctions, which causes decrease in E-cadherin levels at the adherens junctions and mislocalization of myosin II at the junctions before they enough shorten, compromising completion of junction shortening. Overexpressing E-cadherin restores myosin II distribution closely placed at the junctions and junction contraction. Our results suggest that contractility both induces and perturbs junction contraction and that the attenuation of such perturbations by Pak3 facilitates persistent junction shortening.

Suggested Citation

  • Hiroyuki Uechi & Kazuki Fukushima & Ryota Shirasawa & Sayaka Sekine & Erina Kuranaga, 2022. "Inhibition of negative feedback for persistent epithelial cell–cell junction contraction by p21-activated kinase 3," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31252-0
    DOI: 10.1038/s41467-022-31252-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31252-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31252-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Georg Dietzl & Doris Chen & Frank Schnorrer & Kuan-Chung Su & Yulia Barinova & Michaela Fellner & Beate Gasser & Kaolin Kinsey & Silvia Oppel & Susanne Scheiblauer & Africa Couto & Vincent Marra & Kry, 2007. "A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila," Nature, Nature, vol. 448(7150), pages 151-156, July.
    2. Claire Bertet & Lawrence Sulak & Thomas Lecuit, 2004. "Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation," Nature, Nature, vol. 429(6992), pages 667-671, June.
    3. Matteo Rauzi & Pierre-François Lenne & Thomas Lecuit, 2010. "Planar polarized actomyosin contractile flows control epithelial junction remodelling," Nature, Nature, vol. 468(7327), pages 1110-1114, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Firmino & Jean-Yves Tinevez & Elisabeth Knust, 2013. "Crumbs Affects Protein Dynamics In Anterior Regions Of The Developing Drosophila Embryo," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    2. Sanjay Karki & Mehdi Saadaoui & Valentin Dunsing & Stephen Kerridge & Elise Silva & Jean-Marc Philippe & Cédric Maurange & Thomas Lecuit, 2023. "Serotonin signaling regulates actomyosin contractility during morphogenesis in evolutionarily divergent lineages," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Shun Li & Zong-Yuan Liu & Hao Li & Sijia Zhou & Jiaying Liu & Ningwei Sun & Kai-Fu Yang & Vanessa Dougados & Thomas Mangeat & Karine Belguise & Xi-Qiao Feng & Yiyao Liu & Xiaobo Wang, 2024. "Basal actomyosin pulses expand epithelium coordinating cell flattening and tissue elongation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Daniel Sánchez-Gutiérrez & Aurora Sáez & Alberto Pascual & Luis M Escudero, 2013. "Topological Progression in Proliferating Epithelia Is Driven by a Unique Variation in Polygon Distribution," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-8, November.
    5. Sijia Zhou & Peng Li & Jiaying Liu & Juan Liao & Hao Li & Lin Chen & Zhihua Li & Qiongyu Guo & Karine Belguise & Bin Yi & Xiaobo Wang, 2022. "Two Rac1 pools integrate the direction and coordination of collective cell migration," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Eyal Rozenfeld & Nadine Ehmann & Julia E. Manoim & Robert J. Kittel & Moshe Parnas, 2023. "Homeostatic synaptic plasticity rescues neural coding reliability," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. R. Allena & J. Muñoz & D. Aubry, 2013. "Diffusion-reaction model for embryo development," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 235-248.
    8. Tomer Stern & Stanislav Y Shvartsman & Eric F Wieschaus, 2020. "Template-based mapping of dynamic motifs in tissue morphogenesis," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-20, August.
    9. Guilherme Ventura & Aboutaleb Amiri & Raghavan Thiagarajan & Mari Tolonen & Amin Doostmohammadi & Jakub Sedzinski, 2022. "Multiciliated cells use filopodia to probe tissue mechanics during epithelial integration in vivo," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Hannah J. Gustafson & Nikolas Claussen & Stefano Renzis & Sebastian J. Streichan, 2022. "Patterned mechanical feedback establishes a global myosin gradient," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Aviel Even & Giovanni Morelli & Silvia Turchetto & Michal Shilian & Romain Le Bail & Sophie Laguesse & Nathalie Krusy & Ariel Brisker & Alexander Brandis & Shani Inbar & Alain Chariot & Frédéric Saudo, 2021. "ATP-citrate lyase promotes axonal transport across species," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    12. Julia Eckert & Benoît Ladoux & René-Marc Mège & Luca Giomi & Thomas Schmidt, 2023. "Hexanematic crossover in epithelial monolayers depends on cell adhesion and cell density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Olga Kubrak & Takashi Koyama & Nadja Ahrentløv & Line Jensen & Alina Malita & Muhammad T. Naseem & Mette Lassen & Stanislav Nagy & Michael J. Texada & Kenneth V. Halberg & Kim Rewitz, 2022. "The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Ariadna Marín-Llauradó & Sohan Kale & Adam Ouzeri & Tom Golde & Raimon Sunyer & Alejandro Torres-Sánchez & Ernest Latorre & Manuel Gómez-González & Pere Roca-Cusachs & Marino Arroyo & Xavier Trepat, 2023. "Mapping mechanical stress in curved epithelia of designed size and shape," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Özge Özgüç & Ludmilla de Plater & Varun Kapoor & Anna Francesca Tortorelli & Andrew G Clark & Jean-Léon Maître, 2022. "Cortical softening elicits zygotic contractility during mouse preimplantation development," PLOS Biology, Public Library of Science, vol. 20(3), pages 1-23, March.
    16. Alexis Villars & Alexis Matamoro-Vidal & Florence Levillayer & Romain Levayer, 2022. "Microtubule disassembly by caspases is an important rate-limiting step of cell extrusion," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Zachary T. Spencer & Victoria H. Ng & Hassina Benchabane & Ghalia Saad Siddiqui & Deepesh Duwadi & Ben Maines & Jamal M. Bryant & Anna Schwarzkopf & Kai Yuan & Sara N. Kassel & Anant Mishra & Ashley P, 2023. "The USP46 deubiquitylase complex increases Wingless/Wnt signaling strength by stabilizing Arrow/LRP6," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31252-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.