IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38481-x.html
   My bibliography  Save this article

Wood xerogel for fabrication of high-performance transparent wood

Author

Listed:
  • Shennan Wang

    (AlbaNova University Centre)

  • Lengwan Li

    (KTH Royal Institute of Technology)

  • Li Zha

    (AlbaNova University Centre)

  • Salla Koskela

    (AlbaNova University Centre
    KTH Royal Institute of Technology)

  • Lars A. Berglund

    (KTH Royal Institute of Technology)

  • Qi Zhou

    (AlbaNova University Centre
    KTH Royal Institute of Technology)

Abstract

Optically transparent wood has been fabricated by structure-retaining delignification of wood and subsequent infiltration of thermo- or photocurable polymer resins but still limited by the intrinsic low mesopore volume of the delignified wood. Here we report a facile approach to fabricate strong transparent wood composites using the wood xerogel which allows solvent-free infiltration of resin monomers into the wood cell wall under ambient conditions. The wood xerogel with high specific surface area (260 m2 g–1) and high mesopore volume (0.37 cm3 g–1) is prepared by evaporative drying of delignified wood comprising fibrillated cell walls at ambient pressure. The mesoporous wood xerogel is compressible in the transverse direction and provides precise control of the microstructure, wood volume fraction, and mechanical properties for the transparent wood composites without compromising the optical transmittance. Transparent wood composites of large size and high wood volume fraction (50%) are successfully prepared, demonstrating potential scalability of the method.

Suggested Citation

  • Shennan Wang & Lengwan Li & Li Zha & Salla Koskela & Lars A. Berglund & Qi Zhou, 2023. "Wood xerogel for fabrication of high-performance transparent wood," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38481-x
    DOI: 10.1038/s41467-023-38481-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38481-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38481-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruiyu Mi & Chaoji Chen & Tobias Keplinger & Yong Pei & Shuaiming He & Dapeng Liu & Jianguo Li & Jiaqi Dai & Emily Hitz & Bao Yang & Ingo Burgert & Liangbing Hu, 2020. "Scalable aesthetic transparent wood for energy efficient buildings," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke, Yujie & Tan, Yutong & Feng, Chengchen & Chen, Cong & Lu, Qi & Xu, Qiyang & Wang, Tao & Liu, Hai & Liu, Xinghai & Peng, Jinqing & Long, Yi, 2022. "Tetra-Fish-Inspired aesthetic thermochromic windows toward Energy-Saving buildings," Applied Energy, Elsevier, vol. 315(C).
    2. Hu, Xin & Zhang, Yingbo & Zhang, Jing & Yang, Hongyu & Wang, Faming & Bin Fei, & Noor, Nuruzzaman, 2022. "Sonochemically-coated transparent wood with ZnO: Passive radiative cooling materials for energy saving applications," Renewable Energy, Elsevier, vol. 193(C), pages 398-406.
    3. Beims, Ramon Filipe & Arredondo, Rosa & Sosa Carrero, Dennise Johanna & Yuan, Zhongshun & Li, Hongwei & Shui, Hengfu & Zhang, Yongsheng & Leitch, Mathew & Xu, Chunbao Charles, 2022. "Functionalized wood as bio-based advanced materials: Properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Liu, Sai & Tso, Chi Yan & Du, Yu Wei & Chao, Luke Christopher & Lee, Hau Him & Ho, Tsz Chung & Leung, Michael Kwok Hi, 2021. "Bioinspired thermochromic transparent hydrogel wood with advanced optical regulation abilities and mechanical properties for windows," Applied Energy, Elsevier, vol. 297(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38481-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.