IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38200-6.html
   My bibliography  Save this article

Triboelectric-induced ion mobility for artificial intelligence-enhanced mid-infrared gas spectroscopy

Author

Listed:
  • Jianxiong Zhu

    (Southeast University)

  • Shanling Ji

    (Southeast University)

  • Zhihao Ren

    (National University of Singapore
    National University of Singapore
    NUS Suzhou Research Institute (NUSRI))

  • Wenyu Wu

    (Southeast University)

  • Zhihao Zhang

    (Southeast University)

  • Zhonghua Ni

    (Southeast University)

  • Lei Liu

    (Southeast University)

  • Zhisheng Zhang

    (Southeast University)

  • Aiguo Song

    (Southeast University)

  • Chengkuo Lee

    (National University of Singapore
    National University of Singapore
    NUS Suzhou Research Institute (NUSRI))

Abstract

Isopropyl alcohol molecules, as a biomarker for anti-virus diagnosis, play a significant role in the area of environmental safety and healthcare relating volatile organic compounds. However, conventional gas molecule detection exhibits dramatic drawbacks, like the strict working conditions of ion mobility methodology and weak light-matter interaction of mid-infrared spectroscopy, yielding limited response of targeted molecules. We propose a synergistic methodology of artificial intelligence-enhanced ion mobility and mid-infrared spectroscopy, leveraging the complementary features from the sensing signal in different dimensions to reach superior accuracy for isopropyl alcohol identification. We pull in “cold” plasma discharge from triboelectric generator which improves the mid-infrared spectroscopic response of isopropyl alcohol with good regression prediction. Moreover, this synergistic methodology achieves ~99.08% accuracy for a precise gas concentration prediction, even with interferences of different carbon-based gases. The synergistic methodology of artificial intelligence-enhanced system creates mechanism of accurate gas sensing for mixture and regression prediction in healthcare.

Suggested Citation

  • Jianxiong Zhu & Shanling Ji & Zhihao Ren & Wenyu Wu & Zhihao Zhang & Zhonghua Ni & Lei Liu & Zhisheng Zhang & Aiguo Song & Chengkuo Lee, 2023. "Triboelectric-induced ion mobility for artificial intelligence-enhanced mid-infrared gas spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38200-6
    DOI: 10.1038/s41467-023-38200-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38200-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38200-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaochao Tan & Heng Zhang & Junyu Li & Haowei Wan & Qiushi Guo & Houbin Zhu & Huan Liu & Fei Yi, 2020. "Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Hyungjin Kim & Shiekh Zia Uddin & Der-Hsien Lien & Matthew Yeh & Nima Sefidmooye Azar & Sivacarendran Balendhran & Taehun Kim & Niharika Gupta & Yoonsoo Rho & Costas P. Grigoropoulos & Kenneth B. Croz, 2021. "Actively variable-spectrum optoelectronics with black phosphorus," Nature, Nature, vol. 596(7871), pages 232-237, August.
    3. Haiyang Zou & Ying Zhang & Litong Guo & Peihong Wang & Xu He & Guozhang Dai & Haiwu Zheng & Chaoyu Chen & Aurelia Chi Wang & Cheng Xu & Zhong Lin Wang, 2019. "Quantifying the triboelectric series," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Jia Cheng & Wenbo Ding & Yunlong Zi & Yijia Lu & Linhong Ji & Fan Liu & Changsheng Wu & Zhong Lin Wang, 2018. "Triboelectric microplasma powered by mechanical stimuli," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhihao Ren & Zixuan Zhang & Jingxuan Wei & Bowei Dong & Chengkuo Lee, 2022. "Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Zehua Peng & Jihong Shi & Xiao Xiao & Ying Hong & Xuemu Li & Weiwei Zhang & Yongliang Cheng & Zuankai Wang & Wen Jung Li & Jun Chen & Michael K. H. Leung & Zhengbao Yang, 2022. "Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Ziming Wang & Xuanli Dong & Xiao-Fen Li & Yawei Feng & Shunning Li & Wei Tang & Zhong Lin Wang, 2024. "A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Hugo Henck & Diego Mauro & Daniil Domaretskiy & Marc Philippi & Shahriar Memaran & Wenkai Zheng & Zhengguang Lu & Dmitry Shcherbakov & Chun Ning Lau & Dmitry Smirnov & Luis Balicas & Kenji Watanabe & , 2022. "Light sources with bias tunable spectrum based on van der Waals interface transistors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Zhao, Chaoyang & Hu, Guobiao & Li, Xin & Liu, Zicheng & Yuan, Weifeng & Yang, Yaowen, 2023. "Wide-bandwidth triboelectric energy harvester combining impact nonlinearity and multi-resonance method," Applied Energy, Elsevier, vol. 348(C).
    7. Chaojie Chen & Shilong Zhao & Caofeng Pan & Yunlong Zi & Fangcheng Wang & Cheng Yang & Zhong Lin Wang, 2022. "A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Hang Zhang & Sankaran Sundaresan & Michael A. Webb, 2024. "Thermodynamic driving forces in contact electrification between polymeric materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Zhaoqi Liu & Yunzhi Huang & Yuxiang Shi & Xinglin Tao & Hezhi He & Feida Chen & Zhao-Xia Huang & Zhong Lin Wang & Xiangyu Chen & Jin-Ping Qu, 2022. "Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Le Zhang & Han Wang & Xinrong Zong & Yongheng Zhou & Taihong Wang & Lin Wang & Xiaolong Chen, 2022. "Probing interlayer shear thermal deformation in atomically-thin van der Waals layered materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Changjun Jia & Yongsheng Zhu & Fengxin Sun & Yuzhang Wen & Qi Wang & Ying Li & Yupeng Mao & Chongle Zhao, 2022. "Gas-Supported Triboelectric Nanogenerator Based on In Situ Gap-Generation Method for Biomechanical Energy Harvesting and Wearable Motion Monitoring," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    12. Massimo Mariello & Elisa Scarpa & Luciana Algieri & Francesco Guido & Vincenzo Mariano Mastronardi & Antonio Qualtieri & Massimo De Vittorio, 2020. "Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C," Energies, MDPI, vol. 13(7), pages 1-12, April.
    13. Hu, Yanqiang & Wang, Xiaoli & Qin, Yechen & Li, Zhihao & Wang, Chenfei & Wu, Heng, 2022. "A robust hybrid generator for harvesting vehicle suspension vibration energy from random road excitation," Applied Energy, Elsevier, vol. 309(C).
    14. Li, Xiang & Gao, Qi & Cao, Yuying & Yang, Yanfei & Liu, Shiming & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Optimization strategy of wind energy harvesting via triboelectric-electromagnetic flexible cooperation," Applied Energy, Elsevier, vol. 307(C).
    15. Zhao, Chaoyang & Yang, Yaowen & Upadrashta, Deepesh & Zhao, Liya, 2021. "Design, modeling and experimental validation of a low-frequency cantilever triboelectric energy harvester," Energy, Elsevier, vol. 214(C).
    16. Xin Pan & Yixi Zhuang & Wei He & Cunjian Lin & Lefu Mei & Changjian Chen & Hao Xue & Zhigang Sun & Chunfeng Wang & Dengfeng Peng & Yanqing Zheng & Caofeng Pan & Lixin Wang & Rong-Jun Xie, 2024. "Quantifying the interfacial triboelectricity in inorganic-organic composite mechanoluminescent materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Yikui Gao & Lixia He & Di Liu & Jiayue Zhang & Linglin Zhou & Zhong Lin Wang & Jie Wang, 2024. "Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).
    19. Deokjae Heo & Jihoon Chung & Gunsub Shin & Minhyeong Seok & Chanhee Lee & Sangmin Lee, 2021. "Yo-Yo Inspired Triboelectric Nanogenerator," Energies, MDPI, vol. 14(7), pages 1-9, March.
    20. Mengjiao Li & Hong-Wei Lu & Shu-Wei Wang & Rei-Ping Li & Jiann-Yeu Chen & Wen-Shuo Chuang & Feng-Shou Yang & Yen-Fu Lin & Chih-Yen Chen & Ying-Chih Lai, 2022. "Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38200-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.