IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37754-9.html
   My bibliography  Save this article

Oxynitrides enabled photoelectrochemical water splitting with over 3,000 hrs stable operation in practical two-electrode configuration

Author

Listed:
  • Yixin Xiao

    (University of Michigan)

  • Xianghua Kong

    (McGill University)

  • Srinivas Vanka

    (University of Michigan)

  • Wan Jae Dong

    (University of Michigan)

  • Guosong Zeng

    (Chemical Sciences Division)

  • Zhengwei Ye

    (University of Michigan)

  • Kai Sun

    (University of Michigan)

  • Ishtiaque Ahmed Navid

    (University of Michigan)

  • Baowen Zhou

    (University of Michigan)

  • Francesca M. Toma

    (Chemical Sciences Division)

  • Hong Guo

    (McGill University)

  • Zetian Mi

    (University of Michigan)

Abstract

Solar photoelectrochemical reactions have been considered one of the most promising paths for sustainable energy production. To date, however, there has been no demonstration of semiconductor photoelectrodes with long-term stable operation in a two-electrode configuration, which is required for any practical application. Herein, we demonstrate the stable operation of a photocathode comprising Si and GaN, the two most produced semiconductors in the world, for 3,000 hrs without any performance degradation in two-electrode configurations. Measurements in both three- and two-electrode configurations suggest that surfaces of the GaN nanowires on Si photocathode transform in situ into Ga-O-N that drastically enhances hydrogen evolution and remains stable for 3,000 hrs. First principles calculations further revealed that the in-situ Ga-O-N species exhibit atomic-scale surface metallization. This study overcomes the conventional dilemma between efficiency and stability imposed by extrinsic cocatalysts, offering a path for practical application of photoelectrochemical devices and systems for clean energy.

Suggested Citation

  • Yixin Xiao & Xianghua Kong & Srinivas Vanka & Wan Jae Dong & Guosong Zeng & Zhengwei Ye & Kai Sun & Ishtiaque Ahmed Navid & Baowen Zhou & Francesca M. Toma & Hong Guo & Zetian Mi, 2023. "Oxynitrides enabled photoelectrochemical water splitting with over 3,000 hrs stable operation in practical two-electrode configuration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37754-9
    DOI: 10.1038/s41467-023-37754-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37754-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37754-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James L. Young & Myles A. Steiner & Henning Döscher & Ryan M. France & John A. Turner & Todd G. Deutsch, 2017. "Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures," Nature Energy, Nature, vol. 2(4), pages 1-8, April.
    2. Matthias M. May & Hans-Joachim Lewerenz & David Lackner & Frank Dimroth & Thomas Hannappel, 2015. "Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Haneol Lim & James L. Young & John F. Geisz & Daniel J. Friedman & Todd G. Deutsch & Jongseung Yoon, 2019. "High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Austin M. K. Fehr & Ayush Agrawal & Faiz Mandani & Christian L. Conrad & Qi Jiang & So Yeon Park & Olivia Alley & Bor Li & Siraj Sidhik & Isaac Metcalf & Christopher Botello & James L. Young & Jacky E, 2023. "Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Junfang Zhang & Yuntao Zhu & Christian Njel & Yuxin Liu & Pietro Dallabernardina & Molly M. Stevens & Peter H. Seeberger & Oleksandr Savateev & Felix F. Loeffler, 2023. "Metal-free photoanodes for C–H functionalization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    4. Ma, Ben-Chi & Lin, Hua & Zhu, Yizhou & Zeng, Zilong & Geng, Jiafeng & Jing, Dengwei, 2022. "A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter," Renewable Energy, Elsevier, vol. 194(C), pages 1221-1232.
    5. Ma, Zhiwen & Davenport, Patrick & Saur, Genevieve, 2022. "System and technoeconomic analysis of solar thermochemical hydrogen production," Renewable Energy, Elsevier, vol. 190(C), pages 294-308.
    6. Keisuke Obata & Michael Schwarze & Tabea A. Thiel & Xinyi Zhang & Babu Radhakrishnan & Ibbi Y. Ahmet & Roel Krol & Reinhard Schomäcker & Fatwa F. Abdi, 2023. "Solar-driven upgrading of biomass by coupled hydrogenation using in situ (photo)electrochemically generated H2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Baroutaji, Ahmad & Wilberforce, Tabbi & Ramadan, Mohamad & Olabi, Abdul Ghani, 2019. "Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 31-40.
    8. Saraswat, Sushil Kumar & Rodene, Dylan D. & Gupta, Ram B., 2018. "Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 228-248.
    9. Chao Zhen & Xiangtao Chen & Ruotian Chen & Fengtao Fan & Xiaoxiang Xu & Yuyang Kang & Jingdong Guo & Lianzhou Wang & Gao Qing (Max) Lu & Kazunari Domen & Hui-Ming Cheng & Gang Liu, 2024. "Liquid metal-embraced photoactive films for artificial photosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37754-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.