IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37311-4.html
   My bibliography  Save this article

Elevation-dependent intensification of fire danger in the western United States

Author

Listed:
  • Mohammad Reza Alizadeh

    (Massachusetts Institute of Technology
    McGill University
    University of Quebec in Montreal)

  • John T. Abatzoglou

    (University of California, Merced)

  • Jan Adamowski

    (McGill University)

  • Arash Modaresi Rad

    (Boise State University)

  • Amir AghaKouchak

    (University of California
    University of California)

  • Francesco S. R. Pausata

    (University of Quebec in Montreal)

  • Mojtaba Sadegh

    (Boise State University)

Abstract

Studies have identified elevation-dependent warming trends, but investigations of such trends in fire danger are absent in the literature. Here, we demonstrate that while there have been widespread increases in fire danger across the mountainous western US from 1979 to 2020, trends were most acute at high-elevation regions above 3000 m. The greatest increase in the number of days conducive to large fires occurred at 2500–3000 m, adding 63 critical fire danger days between 1979 and 2020. This includes 22 critical fire danger days occurring outside the warm season (May–September). Furthermore, our findings indicate increased elevational synchronization of fire danger in western US mountains, which can facilitate increased geographic opportunities for ignitions and fire spread that further complicate fire management operations. We hypothesize that several physical mechanisms underpinned the observed trends, including elevationally disparate impacts of earlier snowmelt, intensified land-atmosphere feedbacks, irrigation, and aerosols, in addition to widespread warming/drying.

Suggested Citation

  • Mohammad Reza Alizadeh & John T. Abatzoglou & Jan Adamowski & Arash Modaresi Rad & Amir AghaKouchak & Francesco S. R. Pausata & Mojtaba Sadegh, 2023. "Elevation-dependent intensification of fire danger in the western United States," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37311-4
    DOI: 10.1038/s41467-023-37311-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37311-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37311-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amir AghaKouchak & Laurie S. Huning & Felicia Chiang & Mojtaba Sadegh & Farshid Vahedifard & Omid Mazdiyasni & Hamed Moftakhari & Iman Mallakpour, 2018. "How do natural hazards cascade to cause disasters?," Nature, Nature, vol. 561(7724), pages 458-460, September.
    2. Kat J. Bormann & Ross D. Brown & Chris Derksen & Thomas H. Painter, 2018. "Estimating snow-cover trends from space," Nature Climate Change, Nature, vol. 8(11), pages 924-928, November.
    3. Imtiaz Rangwala & James Miller, 2012. "Climate change in mountains: a review of elevation-dependent warming and its possible causes," Climatic Change, Springer, vol. 114(3), pages 527-547, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingxin Chen & Jing Zhang & Pandu R. Tadikamalla & Lei Zhou, 2019. "The Mechanism of Social Organization Participation in Natural Hazards Emergency Relief: A Case Study Based on the Social Network Analysis," IJERPH, MDPI, vol. 16(21), pages 1-20, October.
    2. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    3. Randell, Heather & Jiang, Chengsheng & Liang, Xin-Zhong & Murtugudde, Raghu & Sapkota, Amir, 2021. "Food insecurity and compound environmental shocks in Nepal: Implications for a changing climate," World Development, Elsevier, vol. 145(C).
    4. Arnaud Mignan & Ziqi Wang, 2020. "Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics," IJERPH, MDPI, vol. 17(19), pages 1-21, October.
    5. Kumar Bahadur Darjee & Prem Raj Neupane & Michael Köhl, 2023. "Proactive Adaptation Responses by Vulnerable Communities to Climate Change Impacts," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    6. Bursa, Bartosz & Mailer, Markus & Axhausen, Kay W., 2022. "Travel behavior on vacation: transport mode choice of tourists at destinations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 234-261.
    7. Barbour, Emily J. & Sarfaraz Gani Adnan, Mohammed & Borgomeo, Edoardo & Paprocki, Kasia & Shah Alam Khan, M. & Salehin, Mashfiqus & W. Hall, Jim, 2022. "The unequal distribution of water risks and adaptation benefits in coastal Bangladesh," LSE Research Online Documents on Economics 113320, London School of Economics and Political Science, LSE Library.
    8. Xiaohui Fan & Qixiang Wang & Mengben Wang & Claudia Villarroel Jiménez, 2015. "Warming Amplification of Minimum and Maximum Temperatures over High-Elevation Regions across the Globe," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-17, October.
    9. Elias Zubler & Andreas Fischer & Mark Liniger & Mischa Croci-Maspoli & Simon Scherrer & Christof Appenzeller, 2014. "Localized climate change scenarios of mean temperature and precipitation over Switzerland," Climatic Change, Springer, vol. 125(2), pages 237-252, July.
    10. Gholamreza Roshan & Stefan W. Grab & Mohammad Saeed Najafi, 2020. "The role of physical geographic parameters affecting past (1980–2010) and future (2020–2049) thermal stress in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 365-399, May.
    11. Alik Ismail-Zadeh, 2022. "Natural hazards and climate change are not drivers of disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2147-2154, March.
    12. Libin Yan & Zhengyu Liu & Guangshan Chen & J. E. Kutzbach & Xiaodong Liu, 2016. "Mechanisms of elevation-dependent warming over the Tibetan plateau in quadrupled CO2 experiments," Climatic Change, Springer, vol. 135(3), pages 509-519, April.
    13. Shasha Yang & Anjie Jin & Wen Nie & Cong Liu & Yu Li, 2022. "Research on SSA-LSTM-Based Slope Monitoring and Early Warning Model," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    14. D. Espinoza & J. Morris & H. Baroud & M. Bisogno & A. Cifuentes & A. Gentzoglanis & L. Luccioni & J. Rojo & F. Vahedifard, 2020. "The role of traditional discounted cash flows in the tragedy of the horizon: another inconvenient truth," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 643-660, April.
    15. Moeka Harada & Kazuko Ishikawa-Takata & Nobuyo Tsuboyama-Kasaoka, 2020. "Analysis of Necessary Support in the 2011 Great East Japan Earthquake Disaster Area," IJERPH, MDPI, vol. 17(10), pages 1-17, May.
    16. Guoqing Qian & Chuansong Duanmu & Nisar Ali & Adnan Khan & Sumeet Malik & Yong Yang & Muhammad Bilal, 2022. "Hazardous wastes, adverse impacts, and management strategies: a way forward to environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9731-9756, August.
    17. Mifta Shafiq & Ifra Ashraf & Zahoor Islam & Pervez Ahmed & A. P. Dimri, 2020. "Response of streamflow to climate variability in the source region of Jhelum River Basin in Kashmir valley, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 611-637, October.
    18. David Cerulli & Michael Scott & Raivo Aunap & Ain Kull & Jaan Pärn & Jack Holbrook & Ülo Mander, 2020. "The Role of Education in Increasing Awareness and Reducing Impact of Natural Hazards," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    19. Omid Bozorg-Haddad & Babak Zolghadr-Asli & Xuefeng Chu & Hugo A. Loáiciga, 2021. "Intense extreme hydro-climatic events take a toll on society," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2385-2391, September.
    20. Chi Zhang & Hong Zhang & Fuqiang Zhao & Jing Sun, 2019. "Understanding Thermal Impact of Roads on Permafrost Using Normalized Spectral Entropy," Sustainability, MDPI, vol. 11(24), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37311-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.