IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36842-0.html
   My bibliography  Save this article

Vibrational signature of hydrated protons confined in MXene interlayers

Author

Listed:
  • Mailis Lounasvuori

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Yangyunli Sun

    (University of California, Riverside)

  • Tyler S. Mathis

    (Drexel University)

  • Ljiljana Puskar

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Ulrich Schade

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • De-En Jiang

    (University of California, Riverside
    Vanderbilt University)

  • Yury Gogotsi

    (Drexel University)

  • Tristan Petit

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

Abstract

The hydration structure of protons has been studied for decades in bulk water and protonated clusters due to its importance but has remained elusive in planar confined environments. Two-dimensional (2D) transition metal carbides known as MXenes show extreme capacitance in protic electrolytes, which has attracted attention in the energy storage field. We report here that discrete vibrational modes related to protons intercalated in the 2D slits between Ti3C2Tx MXene layers can be detected using operando infrared spectroscopy. The origin of these modes, not observed for protons in bulk water, is attributed to protons with reduced coordination number in confinement based on Density Functional Theory calculations. This study therefore demonstrates a useful tool for the characterization of chemical species under 2D confinement.

Suggested Citation

  • Mailis Lounasvuori & Yangyunli Sun & Tyler S. Mathis & Ljiljana Puskar & Ulrich Schade & De-En Jiang & Yury Gogotsi & Tristan Petit, 2023. "Vibrational signature of hydrated protons confined in MXene interlayers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36842-0
    DOI: 10.1038/s41467-023-36842-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36842-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36842-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maria R. Lukatskaya & Sankalp Kota & Zifeng Lin & Meng-Qiang Zhao & Netanel Shpigel & Mikhael D. Levi & Joseph Halim & Pierre-Louis Taberna & Michel W. Barsoum & Patrice Simon & Yury Gogotsi, 2017. "Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides," Nature Energy, Nature, vol. 2(8), pages 1-6, August.
    2. G. Algara-Siller & O. Lehtinen & F. C. Wang & R. R. Nair & U. Kaiser & H. A. Wu & A. K. Geim & I. V. Grigorieva, 2015. "Square ice in graphene nanocapillaries," Nature, Nature, vol. 519(7544), pages 443-445, March.
    3. Candy Haley Yi Xuan Lim & Anastassia Sorkin & Qiaoliang Bao & Ang Li & Kai Zhang & Milos Nesladek & Kian Ping Loh, 2013. "A hydrothermal anvil made of graphene nanobubbles on diamond," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    4. Eric Tyrode & Sanghamitra Sengupta & Adrien Sthoer, 2020. "Identifying Eigen-like hydrated protons at negatively charged interfaces," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    5. Simon Fleischmann & Yuan Zhang & Xuepeng Wang & Peter T. Cummings & Jianzhong Wu & Patrice Simon & Yury Gogotsi & Volker Presser & Veronica Augustyn, 2022. "Continuous transition from double-layer to Faradaic charge storage in confined electrolytes," Nature Energy, Nature, vol. 7(3), pages 222-228, March.
    6. Jinfeng Liu & Jinrong Yang & Xiao Cheng Zeng & Sotiris S. Xantheas & Kiyoshi Yagi & Xiao He, 2021. "Towards complete assignment of the infrared spectrum of the protonated water cluster H+(H2O)21," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Siraprapha Deebansok & Jie Deng & Etienne Calvez & Yachao Zhu & Olivier Crosnier & Thierry Brousse & Olivier Fontaine, 2024. "Capacitive tendency concept alongside supervised machine-learning toward classifying electrochemical behavior of battery and pseudocapacitor materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Qiulong Wei & Xiaoqing Chang & Danielle Butts & Ryan DeBlock & Kun Lan & Junbin Li & Dongliang Chao & Dong-Liang Peng & Bruce Dunn, 2023. "Surface-redox sodium-ion storage in anatase titanium oxide," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Tang, Hong & Jiang, Mengjin & Ren, Erhui & Zhang, Yue & Lai, Xiaoxu & Cui, Ce & Jiang, Shouxiang & Zhou, Mi & Qin, Qin & Guo, Ronghui, 2020. "Integrate electrical conductivity and Li+ ion mobility into hierarchical heterostructure Ti3C2@CoO/ZnO composites toward high-performance lithium ion storage," Energy, Elsevier, vol. 212(C).
    5. Hao-Ting Chin & Jiri Klimes & I-Fan Hu & Ding-Rui Chen & Hai-Thai Nguyen & Ting-Wei Chen & Shao-Wei Ma & Mario Hofmann & Chi-Te Liang & Ya-Ping Hsieh, 2021. "Ferroelectric 2D ice under graphene confinement," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Ke Li & Juan Zhao & Ainur Zhussupbekova & Christopher E. Shuck & Lucia Hughes & Yueyao Dong & Sebastian Barwich & Sebastien Vaesen & Igor V. Shvets & Matthias Möbius & Wolfgang Schmitt & Yury Gogotsi , 2022. "4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Yongjiu Yuan & Xin Li & Lan Jiang & Misheng Liang & Xueqiang Zhang & Shouyu Wu & Junrui Wu & Mengyao Tian & Yang Zhao & Liangti Qu, 2023. "Laser maskless fast patterning for multitype microsupercapacitors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Tholkappiyan Ramachandran & Abdel-Hamid Ismail Mourad & Mostafa S. A. ElSayed, 2023. "Nb 2 CT x -Based MXenes Most Recent Developments: From Principles to New Applications," Energies, MDPI, vol. 16(8), pages 1-27, April.
    11. Changjae Lee & Soon Mo Park & Soobin Kim & Yun-Seok Choi & Geonhyeong Park & Yun Chan Kang & Chong Min Koo & Seon Joon Kim & Dong Ki Yoon, 2022. "Field-induced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Yongjiu Lei & Wenli Zhao & Jun Yin & Yinchang Ma & Zhiming Zhao & Jian Yin & Yusuf Khan & Mohamed Nejib Hedhili & Long Chen & Qingxiao Wang & Youyou Yuan & Xixiang Zhang & Osman M. Bakr & Omar F. Moha, 2023. "Discovery of a three-proton insertion mechanism in α-molybdenum trioxide leading to enhanced charge storage capacity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Han Wu & Junnan Hao & Yunling Jiang & Yiran Jiao & Jiahao Liu & Xin Xu & Kenneth Davey & Chunsheng Wang & Shi-Zhang Qiao, 2024. "Alkaline-based aqueous sodium-ion batteries for large-scale energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Chenxuan Xu & Jingdong Zhu & Dedi Li & Xu Qian & Gang Chen & Huachao Yang, 2022. "Unveiling the Effects of Solvent Polarity within Graphene Based Electric Double-Layer Capacitors," Energies, MDPI, vol. 15(24), pages 1-13, December.
    15. Tomohito Sudare & Takuro Yamaguchi & Mizuki Ueda & Hiromasa Shiiba & Hideki Tanaka & Mongkol Tipplook & Fumitaka Hayashi & Katsuya Teshima, 2022. "Critical role of water structure around interlayer ions for ion storage in layered double hydroxides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Xinchao Lu & Huachao Yang & Zheng Bo & Biyao Gong & Mengyu Cao & Xia Chen & Erka Wu & Jianhua Yan & Kefa Cen & Kostya (Ken) Ostrikov, 2022. "Aligned Ti 3 C 2 T X Aerogel with High Rate Performance, Power Density and Sub-Zero-Temperature Stability," Energies, MDPI, vol. 15(3), pages 1-12, February.
    17. Felix Kohler & Olivier Pierre-Louis & Dag Kristian Dysthe, 2022. "Crystal growth in confinement," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Heba Ahmed & Hossein Alijani & Ahmed El-Ghazaly & Joseph Halim & Billy J. Murdoch & Yemima Ehrnst & Emily Massahud & Amgad R. Rezk & Johanna Rosen & Leslie Y. Yeo, 2023. "Recovery of oxidized two-dimensional MXenes through high frequency nanoscale electromechanical vibration," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Tong, Xuan & Li, Nianqi & Zeng, Min & Wang, Qiuwang, 2019. "Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 398-422.
    20. Xin Yu & Wencai Ren, 2023. "2D CdPS3-based versatile superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36842-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.