IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36501-4.html
   My bibliography  Save this article

A latitudinal gradient of deep-sea invasions for marine fishes

Author

Listed:
  • Sarah T. Friedman

    (Yale University
    Yale University)

  • Martha M. Muñoz

    (Yale University)

Abstract

Although the tropics harbor the greatest species richness globally, recent work has demonstrated that, for many taxa, speciation rates are faster at higher latitudes. Here, we explore lability in oceanic depth as a potential mechanism for this pattern in the most biodiverse vertebrates – fishes. We demonstrate that clades with the highest speciation rates also diversify more rapidly along the depth gradient, drawing a fundamental link between evolutionary and ecological processes on a global scale. Crucially, these same clades also inhabit higher latitudes, creating a prevailing latitudinal gradient of deep-sea invasions concentrated in poleward regions. We interpret these findings in the light of classic ecological theory, unifying the latitudinal variation of oceanic features and the physiological tolerances of the species living there. This work advances the understanding of how niche lability sculpts global patterns of species distributions and underscores the vulnerability of polar ecosystems to changing environmental conditions.

Suggested Citation

  • Sarah T. Friedman & Martha M. Muñoz, 2023. "A latitudinal gradient of deep-sea invasions for marine fishes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36501-4
    DOI: 10.1038/s41467-023-36501-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36501-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36501-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy D. O’Hara & Andrew F. Hugall & Skipton N. C. Woolley & Guadalupe Bribiesca-Contreras & Nicholas J. Bax, 2019. "Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors," Nature, Nature, vol. 565(7741), pages 636-639, January.
    2. Niklas Boers, 2021. "Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation," Nature Climate Change, Nature, vol. 11(8), pages 680-688, August.
    3. Daniel L. Rabosky & Jonathan Chang & Pascal O. Title & Peter F. Cowman & Lauren Sallan & Matt Friedman & Kristin Kaschner & Cristina Garilao & Thomas J. Near & Marta Coll & Michael E. Alfaro, 2018. "An inverse latitudinal gradient in speciation rate for marine fishes," Nature, Nature, vol. 559(7714), pages 392-395, July.
    4. Niklas Boers, 2021. "Publisher Correction: Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation," Nature Climate Change, Nature, vol. 11(11), pages 1001-1001, November.
    5. Curtis Deutsch & Justin L. Penn & Brad Seibel, 2020. "Metabolic trait diversity shapes marine biogeography," Nature, Nature, vol. 585(7826), pages 557-562, September.
    6. Stilianos Louca & Matthew W. Pennell, 2020. "Extant timetrees are consistent with a myriad of diversification histories," Nature, Nature, vol. 580(7804), pages 502-505, April.
    7. W. Jetz & G. H. Thomas & J. B. Joy & K. Hartmann & A. O. Mooers, 2012. "The global diversity of birds in space and time," Nature, Nature, vol. 491(7424), pages 444-448, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitar Dimitrov & Xiaoting Xu & Xiangyan Su & Nawal Shrestha & Yunpeng Liu & Jonathan D. Kennedy & Lisha Lyu & David Nogués-Bravo & James Rosindell & Yong Yang & Jon Fjeldså & Jianquan Liu & Bernhard, 2023. "Diversification of flowering plants in space and time," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Maxime Policarpo & Maude W. Baldwin & Didier Casane & Walter Salzburger, 2024. "Diversity and evolution of the vertebrate chemoreceptor gene repertoire," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Parker Albert & Ollier Clifford, 2021. "The Atlantic Meridional Overturning Circulation is not collapsing," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 163-167, September.
    4. Gregory Thom & Marcelo Gehara & Brian Tilston Smith & Cristina Y. Miyaki & Fábio Raposo Amaral, 2021. "Microevolutionary dynamics show tropical valleys are deeper for montane birds of the Atlantic Forest," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Kerry Emanuel, 2021. "Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Kelly Wanser & Sarah J. Doherty & James W. Hurrell & Alex Wong, 2022. "Near-term climate risks and sunlight reflection modification: a roadmap approach for physical sciences research," Climatic Change, Springer, vol. 174(3), pages 1-20, October.
    7. Beatriz Arellano-Nava & Paul R. Halloran & Chris A. Boulton & James Scourse & Paul G. Butler & David J. Reynolds & Timothy M. Lenton, 2022. "Destabilisation of the Subpolar North Atlantic prior to the Little Ice Age," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Stephen Keen & Timothy M. Lenton & Antoine Godin & Devrim Yilmaz & Matheus Grasselli & Timothy J. Garrett, 2021. "Economists' erroneous estimates of damages from climate change," Papers 2108.07847, arXiv.org.
    9. Andrew F Magee & Sebastian Höhna & Tetyana I Vasylyeva & Adam D Leaché & Vladimir N Minin, 2020. "Locally adaptive Bayesian birth-death model successfully detects slow and rapid rate shifts," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-23, October.
    10. Simon L. L. Michel & Didier Swingedouw & Pablo Ortega & Guillaume Gastineau & Juliette Mignot & Gerard McCarthy & Myriam Khodri, 2022. "Early warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Felipe O. Cerezer & Cristian S. Dambros & Marco T. P. Coelho & Fernanda A. S. Cassemiro & Elisa Barreto & James S. Albert & Rafael O. Wüest & Catherine H. Graham, 2023. "Accelerated body size evolution in upland environments is correlated with recent speciation in South American freshwater fishes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Jan Smyčka & Anna Toszogyova & David Storch, 2023. "The relationship between geographic range size and rates of species diversification," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Joan Garcia-Porta & Daniel Sol & Matt Pennell & Ferran Sayol & Antigoni Kaliontzopoulou & Carlos A. Botero, 2022. "Niche expansion and adaptive divergence in the global radiation of crows and ravens," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Thomas M. Bury & Daniel Dylewsky & Chris T. Bauch & Madhur Anand & Leon Glass & Alvin Shrier & Gil Bub, 2023. "Predicting discrete-time bifurcations with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Lars Max & Dirk Nürnberg & Cristiano M. Chiessi & Marlene M. Lenz & Stefan Mulitza, 2022. "Subsurface ocean warming preceded Heinrich Events," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Justin W. Baldwin & Joan Garcia-Porta & Carlos A. Botero, 2023. "Complementarity in Allen’s and Bergmann’s rules among birds," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Alexandra McQueen & Marcel Klaassen & Glenn J. Tattersall & Robyn Atkinson & Roz Jessop & Chris J. Hassell & Maureen Christie & Matthew R. E. Symonds, 2022. "Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Elspeth Kenny & Tim R. Birkhead & Jonathan P. Green, 2017. "Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(4), pages 1142-1148.
    19. Theresa L. Cole & Chengran Zhou & Miaoquan Fang & Hailin Pan & Daniel T. Ksepka & Steven R. Fiddaman & Christopher A. Emerling & Daniel B. Thomas & Xupeng Bi & Qi Fang & Martin R. Ellegaard & Shaohong, 2022. "Genomic insights into the secondary aquatic transition of penguins," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Jason T Weir & Trevor D Price, 2019. "Song playbacks demonstrate slower evolution of song discrimination in birds from Amazonia than from temperate North America," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-19, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36501-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.