IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35563-0.html
   My bibliography  Save this article

Large scale phenotype imputation and in vivo functional validation implicate ADAMTS14 as an adiposity gene

Author

Listed:
  • Katherine A. Kentistou

    (University of Edinburgh
    University of Edinburgh
    University of Cambridge)

  • Jian’an Luan

    (University of Cambridge)

  • Laura B. L. Wittemans

    (University of Cambridge)

  • Catherine Hambly

    (University of Aberdeen)

  • Lucija Klaric

    (University of Edinburgh)

  • Zoltán Kutalik

    (University of Lausanne
    Swiss Institute of Bioinformatics)

  • John R. Speakman

    (University of Aberdeen
    Chinese Academy of Sciences
    CAS Centre of Excellence in Animal Evolution and Genetics)

  • Nicholas J. Wareham

    (University of Cambridge)

  • Timothy J. Kendall

    (University of Edinburgh)

  • Claudia Langenberg

    (University of Cambridge
    Berlin Institute of Health (BIH) Charité University Medicine)

  • James F. Wilson

    (University of Edinburgh
    University of Edinburgh)

  • Peter K. Joshi

    (University of Edinburgh)

  • Nicholas M. Morton

    (University of Edinburgh)

Abstract

Obesity remains an unmet global health burden. Detrimental anatomical distribution of body fat is a major driver of obesity-mediated mortality risk and is demonstrably heritable. However, our understanding of the full genetic contribution to human adiposity is incomplete, as few studies measure adiposity directly. To address this, we impute whole-body imaging adiposity phenotypes in UK Biobank from the 4,366 directly measured participants onto the rest of the cohort, greatly increasing our discovery power. Using these imputed phenotypes in 392,535 participants yielded hundreds of genome-wide significant associations, six of which replicate in independent cohorts. The leading causal gene candidate, ADAMTS14, is further investigated in a mouse knockout model. Concordant with the human association data, the Adamts14−/− mice exhibit reduced adiposity and weight-gain under obesogenic conditions, alongside an improved metabolic rate and health. Thus, we show that phenotypic imputation at scale offers deeper biological insights into the genetics of human adiposity that could lead to therapeutic targets.

Suggested Citation

  • Katherine A. Kentistou & Jian’an Luan & Laura B. L. Wittemans & Catherine Hambly & Lucija Klaric & Zoltán Kutalik & John R. Speakman & Nicholas J. Wareham & Timothy J. Kendall & Claudia Langenberg & J, 2023. "Large scale phenotype imputation and in vivo functional validation implicate ADAMTS14 as an adiposity gene," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35563-0
    DOI: 10.1038/s41467-022-35563-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35563-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35563-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    2. Adam E. Locke & Bratati Kahali & Sonja I. Berndt & Anne E. Justice & Tune H. Pers & Felix R. Day & Corey Powell & Sailaja Vedantam & Martin L. Buchkovich & Jian Yang & Damien C. Croteau-Chonka & Tonu , 2015. "Genetic studies of body mass index yield new insights for obesity biology," Nature, Nature, vol. 518(7538), pages 197-206, February.
    3. Claudia Giambartolomei & Damjan Vukcevic & Eric E Schadt & Lude Franke & Aroon D Hingorani & Chris Wallace & Vincent Plagnol, 2014. "Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics," PLOS Genetics, Public Library of Science, vol. 10(5), pages 1-15, May.
    4. Mathias Rask-Andersen & Torgny Karlsson & Weronica E. Ek & Åsa Johansson, 2019. "Genome-wide association study of body fat distribution identifies adiposity loci and sex-specific genetic effects," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Mary E. Dickinson & Ann M. Flenniken & Xiao Ji & Lydia Teboul & Michael D. Wong & Jacqueline K. White & Terrence F. Meehan & Wolfgang J. Weninger & Henrik Westerberg & Hibret Adissu & Candice N. Baker, 2016. "High-throughput discovery of novel developmental phenotypes," Nature, Nature, vol. 537(7621), pages 508-514, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suzanne Vogelezang & Jonathan P Bradfield & Tarunveer S Ahluwalia & John A Curtin & Timo A Lakka & Niels Grarup & Markus Scholz & Peter J van der Most & Claire Monnereau & Evie Stergiakouli & Anni Hei, 2020. "Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-26, October.
    2. Jacob Joseph & Chang Liu & Qin Hui & Krishna Aragam & Zeyuan Wang & Brian Charest & Jennifer E. Huffman & Jacob M. Keaton & Todd L. Edwards & Serkalem Demissie & Luc Djousse & Juan P. Casas & J. Micha, 2022. "Genetic architecture of heart failure with preserved versus reduced ejection fraction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Lili Liu & Atlas Khan & Elena Sanchez-Rodriguez & Francesca Zanoni & Yifu Li & Nicholas Steers & Olivia Balderes & Junying Zhang & Priya Krithivasan & Robert A. LeDesma & Clara Fischman & Scott J. Heb, 2022. "Genetic regulation of serum IgA levels and susceptibility to common immune, infectious, kidney, and cardio-metabolic traits," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Mary P. LaPierre & Katherine Lawler & Svenja Godbersen & I. Sadaf Farooqi & Markus Stoffel, 2022. "MicroRNA-7 regulates melanocortin circuits involved in mammalian energy homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Sylvia Hartmann & Summaira Yasmeen & Benjamin M. Jacobs & Spiros Denaxas & Munir Pirmohamed & Eric R. Gamazon & Mark J. Caulfield & Harry Hemingway & Maik Pietzner & Claudia Langenberg, 2023. "ADRA2A and IRX1 are putative risk genes for Raynaud’s phenomenon," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Xingjie Hao & Zhonghe Shao & Ning Zhang & Minghui Jiang & Xi Cao & Si Li & Yunlong Guan & Chaolong Wang, 2023. "Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Magdalena Zimoń & Yunfeng Huang & Anthi Trasta & Aliaksandr Halavatyi & Jimmy Z. Liu & Chia-Yen Chen & Peter Blattmann & Bernd Klaus & Christopher D. Whelan & David Sexton & Sally John & Wolfgang Hube, 2021. "Pairwise effects between lipid GWAS genes modulate lipid plasma levels and cellular uptake," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    8. Parsa Akbari & Olukayode A. Sosina & Jonas Bovijn & Karl Landheer & Jonas B. Nielsen & Minhee Kim & Senem Aykul & Tanima De & Mary E. Haas & George Hindy & Nan Lin & Ian R. Dinsmore & Jonathan Z. Luo , 2022. "Multiancestry exome sequencing reveals INHBE mutations associated with favorable fat distribution and protection from diabetes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Seppe Goovaerts & Hanne Hoskens & Ryan J. Eller & Noah Herrick & Anthony M. Musolf & Cristina M. Justice & Meng Yuan & Sahin Naqvi & Myoung Keun Lee & Dirk Vandermeulen & Heather L. Szabo-Rogers & Pau, 2023. "Joint multi-ancestry and admixed GWAS reveals the complex genetics behind human cranial vault shape," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Derek W. Brown & Liam D. Cato & Yajie Zhao & Satish K. Nandakumar & Erik L. Bao & Eugene J. Gardner & Aubrey K. Hubbard & Alexander DePaulis & Thomas Rehling & Lei Song & Kai Yu & Stephen J. Chanock &, 2023. "Shared and distinct genetic etiologies for different types of clonal hematopoiesis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Saaket Agrawal & Minxian Wang & Marcus D. R. Klarqvist & Kirk Smith & Joseph Shin & Hesam Dashti & Nathaniel Diamant & Seung Hoan Choi & Sean J. Jurgens & Patrick T. Ellinor & Anthony Philippakis & Me, 2022. "Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Arianna Landini & Irena Trbojević-Akmačić & Pau Navarro & Yakov A. Tsepilov & Sodbo Z. Sharapov & Frano Vučković & Ozren Polašek & Caroline Hayward & Tea Petrović & Marija Vilaj & Yurii S. Aulchenko &, 2022. "Genetic regulation of post-translational modification of two distinct proteins," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Benjamin B. Sun & Stephanie J. Loomis & Fabrizio Pizzagalli & Natalia Shatokhina & Jodie N. Painter & Christopher N. Foley & Megan E. Jensen & Donald G. McLaren & Sai Spandana Chintapalli & Alyssa H. , 2022. "Genetic map of regional sulcal morphology in the human brain from UK biobank data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Qingbo S. Wang & Ryuya Edahiro & Ho Namkoong & Takanori Hasegawa & Yuya Shirai & Kyuto Sonehara & Hiromu Tanaka & Ho Lee & Ryunosuke Saiki & Takayoshi Hyugaji & Eigo Shimizu & Kotoe Katayama & Masahir, 2022. "The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Dixon, Padraig & Hollingworth, William & Harrison, Sean & Davies, Neil M. & Davey Smith, George, 2020. "Mendelian Randomization analysis of the causal effect of adiposity on hospital costs," Journal of Health Economics, Elsevier, vol. 70(C).
    17. Jordi Manuello & Joosung Min & Paul McCarthy & Fidel Alfaro-Almagro & Soojin Lee & Stephen Smith & Lloyd T. Elliott & Anderson M. Winkler & Gwenaëlle Douaud, 2024. "The effects of genetic and modifiable risk factors on brain regions vulnerable to ageing and disease," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Wenhan Chen & Yang Wu & Zhili Zheng & Ting Qi & Peter M. Visscher & Zhihong Zhu & Jian Yang, 2021. "Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    19. Kristina M. Garske & Asha Kar & Caroline Comenho & Brunilda Balliu & David Z. Pan & Yash V. Bhagat & Gregory Rosenberg & Amogha Koka & Sankha Subhra Das & Zong Miao & Janet S. Sinsheimer & Jaakko Kapr, 2023. "Increased body mass index is linked to systemic inflammation through altered chromatin co-accessibility in human preadipocytes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Hazewinkel, Audinga-Dea & Richmond, Rebecca C. & Wade, Kaitlin H. & Dixon, Padraig, 2022. "Mendelian randomization analysis of the causal impact of body mass index and waist-hip ratio on rates of hospital admission," Economics & Human Biology, Elsevier, vol. 44(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35563-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.