IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35496-8.html
   My bibliography  Save this article

Inferring time-varying generation time, serial interval, and incubation period distributions for COVID-19

Author

Listed:
  • Dongxuan Chen

    (The University of Hong Kong
    Hong Kong Science and Technology Park, New Territories)

  • Yiu-Chung Lau

    (The University of Hong Kong
    Hong Kong Science and Technology Park, New Territories)

  • Xiao-Ke Xu

    (College of Information and Communication Engineering, Dalian Minzu University)

  • Lin Wang

    (University of Cambridge)

  • Zhanwei Du

    (The University of Hong Kong
    Hong Kong Science and Technology Park, New Territories)

  • Tim K. Tsang

    (The University of Hong Kong
    Hong Kong Science and Technology Park, New Territories)

  • Peng Wu

    (The University of Hong Kong
    Hong Kong Science and Technology Park, New Territories)

  • Eric H. Y. Lau

    (The University of Hong Kong
    Hong Kong Science and Technology Park, New Territories)

  • Jacco Wallinga

    (Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM)
    Leiden University Medical Center)

  • Benjamin J. Cowling

    (The University of Hong Kong
    Hong Kong Science and Technology Park, New Territories)

  • Sheikh Taslim Ali

    (The University of Hong Kong
    Hong Kong Science and Technology Park, New Territories)

Abstract

The generation time distribution, reflecting the time between successive infections in transmission chains, is a key epidemiological parameter for describing COVID-19 transmission dynamics. However, because exact infection times are rarely known, it is often approximated by the serial interval distribution. This approximation holds under the assumption that infectors and infectees share the same incubation period distribution, which may not always be true. We estimated incubation period and serial interval distributions using 629 transmission pairs reconstructed by investigating 2989 confirmed cases in China in January-February 2020, and developed an inferential framework to estimate the generation time distribution that accounts for variation over time due to changes in epidemiology, sampling biases and public health and social measures. We identified substantial reductions over time in the serial interval and generation time distributions. Our proposed method provides more reliable estimation of the temporal variation in the generation time distribution, improving assessment of transmission dynamics.

Suggested Citation

  • Dongxuan Chen & Yiu-Chung Lau & Xiao-Ke Xu & Lin Wang & Zhanwei Du & Tim K. Tsang & Peng Wu & Eric H. Y. Lau & Jacco Wallinga & Benjamin J. Cowling & Sheikh Taslim Ali, 2022. "Inferring time-varying generation time, serial interval, and incubation period distributions for COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35496-8
    DOI: 10.1038/s41467-022-35496-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35496-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35496-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shengjie Lai & Nick W. Ruktanonchai & Liangcai Zhou & Olivia Prosper & Wei Luo & Jessica R. Floyd & Amy Wesolowski & Mauricio Santillana & Chi Zhang & Xiangjun Du & Hongjie Yu & Andrew J. Tatem, 2020. "Effect of non-pharmaceutical interventions to contain COVID-19 in China," Nature, Nature, vol. 585(7825), pages 410-413, September.
    2. Katelyn M Gostic & Lauren McGough & Edward B Baskerville & Sam Abbott & Keya Joshi & Christine Tedijanto & Rebecca Kahn & Rene Niehus & James A Hay & Pablo M De Salazar & Joel Hellewell & Sophie Meaki, 2020. "Practical considerations for measuring the effective reproductive number, Rt," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.
    3. Reese Richardson & Emile Jorgensen & Philip Arevalo & Tobias M. Holden & Katelyn M. Gostic & Massimo Pacilli & Isaac Ghinai & Shannon Lightner & Sarah Cobey & Jaline Gerardin, 2022. "Tracking changes in SARS-CoV-2 transmission with a novel outpatient sentinel surveillance system in Chicago, USA," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Palatella, Luigi & Vanni, Fabio & Lambert, David, 2021. "A phenomenological estimate of the true scale of CoViD-19 from primary data," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    6. Feng Wang & Xing Ge & Danwen Huang, 2022. "Government Intervention, Human Mobility, and COVID-19: A Causal Pathway Analysis from 121 Countries," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    7. Daniele Proverbio & Françoise Kemp & Stefano Magni & Andreas Husch & Atte Aalto & Laurent Mombaerts & Alexander Skupin & Jorge Gonçalves & Jose Ameijeiras-Alonso & Christophe Ley, 2021. "Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    8. Bradley S Price & Maryam Khodaverdi & Adam Halasz & Brian Hendricks & Wesley Kimble & Gordon S Smith & Sally L Hodder, 2021. "Predicting increases in COVID-19 incidence to identify locations for targeted testing in West Virginia: A machine learning enhanced approach," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-16, November.
    9. Meng, Xin & Guo, Mingxue & Gao, Ziyou & Yang, Zhenzhen & Yuan, Zhilu & Kang, Liujiang, 2022. "The effects of Wuhan highway lockdown measures on the spread of COVID-19 in China," Transport Policy, Elsevier, vol. 117(C), pages 169-180.
    10. Ye, Maoxin & Lyu, Zeyu, 2020. "Trust, risk perception, and COVID-19 infections: Evidence from multilevel analyses of combined original dataset in China," Social Science & Medicine, Elsevier, vol. 265(C).
    11. Ugofilippo Basellini & Diego Alburez-Gutierrez & Emanuele Del Fava & Daniela Perrotta & Marco Bonetti & Carlo Giovanni Camarda & Emilio Zagheni, 2020. "Linking excess mortality to Google mobility data during the COVID-19 pandemic in England and Wales," Working Papers axehlaypkgkzhr-blqv4, French Institute for Demographic Studies.
    12. Choujun Zhan & Chi K Tse & Yuxia Fu & Zhikang Lai & Haijun Zhang, 2020. "Modeling and prediction of the 2019 coronavirus disease spreading in China incorporating human migration data," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.
    13. Lin Chen & Fengli Xu & Zhenyu Han & Kun Tang & Pan Hui & James Evans & Yong Li, 2022. "Strategic COVID-19 vaccine distribution can simultaneously elevate social utility and equity," Nature Human Behaviour, Nature, vol. 6(11), pages 1503-1514, November.
    14. Jinlei Qi & Dandan Zhang & Xiang Zhang & Tanakao Takana & Yuhang Pan & Peng Yin & Jiangmei Liu & Shuocen Liu & George F. Gao & Guojun He & Maigeng Zhou, 2022. "Short- and medium-term impacts of strict anti-contagion policies on non-COVID-19 mortality in China," Nature Human Behaviour, Nature, vol. 6(1), pages 55-63, January.
    15. Sabah Bushaj & Xuecheng Yin & Arjeta Beqiri & Donald Andrews & İ. Esra Büyüktahtakın, 2023. "A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization," Annals of Operations Research, Springer, vol. 328(1), pages 245-277, September.
    16. Mohammad Reza Davahli & Krzysztof Fiok & Waldemar Karwowski & Awad M. Aljuaid & Redha Taiar, 2021. "Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks," IJERPH, MDPI, vol. 18(7), pages 1-12, April.
    17. Yun Lin & Bingyi Yang & Sarah Cobey & Eric H. Y. Lau & Dillon C. Adam & Jessica Y. Wong & Helen S. Bond & Justin K. Cheung & Faith Ho & Huizhi Gao & Sheikh Taslim Ali & Nancy H. L. Leung & Tim K. Tsan, 2022. "Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. M. Mofijur & I.M. Rizwanul Fattah & A.B.M. Saiful Islam & M.N. Uddin & S.M. Ashrafur Rahman & M.A. Chowdhury & Md Asraful Alam & Md. Alhaz Uddin, 2020. "Relationship between Weather Variables and New Daily COVID-19 Cases in Dhaka, Bangladesh," Sustainability, MDPI, vol. 12(20), pages 1-10, October.
    19. Martin Schonger & Daniela Sele, 2020. "How to better communicate the exponential growth of infectious diseases," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-13, December.
    20. Qiang Wang & Min Su & Min Zhang & Rongrong Li, 2021. "Integrating Digital Technologies and Public Health to Fight Covid-19 Pandemic: Key Technologies, Applications, Challenges and Outlook of Digital Healthcare," IJERPH, MDPI, vol. 18(11), pages 1-50, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35496-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.