IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35452-6.html
   My bibliography  Save this article

Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease

Author

Listed:
  • Xin Zhou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jinting Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Fang Liu

    (Chinese Academy of Sciences)

  • Junmin Liang

    (Chinese Academy of Sciences)

  • Peng Zhao

    (Chinese Academy of Sciences)

  • Clement K. M. Tsui

    (University of British Columbia
    Tan Tock Seng Hospital
    Nanyang Technological University
    Sidra Medicine)

  • Lei Cai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The role of rhizosphere microbiota in the resistance of tomato plant against soil-borne Fusarium wilt disease (FWD) remains unclear. Here, we showed that the FWD incidence was significantly negatively correlated with the diversity of both rhizosphere bacterial and fungal communities. Using the microbiological culturomic approach, we selected 205 unique strains to construct different synthetic communities (SynComs), which were inoculated into germ-free tomato seedlings, and their roles in suppressing FWD were monitored using omics approach. Cross-kingdom (fungi and bacteria) SynComs were most effective in suppressing FWD than those of Fungal or Bacterial SynComs alone. This effect was underpinned by a combination of molecular mechanisms related to plant immunity and microbial interactions contributed by the bacterial and fungal communities. This study provides new insight into the dynamics of microbiota in pathogen suppression and host immunity interactions. Also, the formulation and manipulation of SynComs for functional complementation constitute a beneficial strategy in controlling soil-borne disease.

Suggested Citation

  • Xin Zhou & Jinting Wang & Fang Liu & Junmin Liang & Peng Zhao & Clement K. M. Tsui & Lei Cai, 2022. "Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35452-6
    DOI: 10.1038/s41467-022-35452-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35452-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35452-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhong Wei & Tianjie Yang & Ville-Petri Friman & Yangchun Xu & Qirong Shen & Alexandre Jousset, 2015. "Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    2. Franciska T. Vries & Rob I. Griffiths & Mark Bailey & Hayley Craig & Mariangela Girlanda & Hyun Soon Gweon & Sara Hallin & Aurore Kaisermann & Aidan M. Keith & Marina Kretzschmar & Philippe Lemanceau , 2018. "Soil bacterial networks are less stable under drought than fungal networks," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Yang Bai & Daniel B. Müller & Girish Srinivas & Ruben Garrido-Oter & Eva Potthoff & Matthias Rott & Nina Dombrowski & Philipp C. Münch & Stijn Spaepen & Mitja Remus-Emsermann & Bruno Hüttel & Alice C., 2015. "Functional overlap of the Arabidopsis leaf and root microbiota," Nature, Nature, vol. 528(7582), pages 364-369, December.
    4. Gabriel Castrillo & Paulo José Pereira Lima Teixeira & Sur Herrera Paredes & Theresa F. Law & Laura de Lorenzo & Meghan E. Feltcher & Omri M. Finkel & Natalie W. Breakfield & Piotr Mieczkowski & Corbi, 2017. "Root microbiota drive direct integration of phosphate stress and immunity," Nature, Nature, vol. 543(7646), pages 513-518, March.
    5. Tao Chen & Kinya Nomura & Xiaolin Wang & Reza Sohrabi & Jin Xu & Lingya Yao & Bradley C. Paasch & Li Ma & James Kremer & Yuti Cheng & Li Zhang & Nian Wang & Ertao Wang & Xiu-Fang Xin & Sheng Yang He, 2020. "A plant genetic network for preventing dysbiosis in the phyllosphere," Nature, Nature, vol. 580(7805), pages 653-657, April.
    6. Omri M. Finkel & Isai Salas-González & Gabriel Castrillo & Jonathan M. Conway & Theresa F. Law & Paulo José Pereira Lima Teixeira & Ellie D. Wilson & Connor R. Fitzpatrick & Corbin D. Jones & Jeffery , 2020. "A single bacterial genus maintains root growth in a complex microbiome," Nature, Nature, vol. 587(7832), pages 103-108, November.
    7. Ben O. Oyserman & Stalin Sarango Flores & Thom Griffioen & Xinya Pan & Elmar Wijk & Lotte Pronk & Wouter Lokhorst & Azkia Nurfikari & Joseph N. Paulson & Mercedeh Movassagh & Nejc Stopnisek & Anne Kup, 2022. "Disentangling the genetic basis of rhizosphere microbiome assembly in tomato," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Pin Su & Houxiang Kang & Qianze Peng & Wisnu Adi Wicaksono & Gabriele Berg & Zhuoxin Liu & Jiejia Ma & Deyong Zhang & Tomislav Cernava & Yong Liu, 2024. "Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Yayu Wang & Xiaolin Wang & Shuai Sun & Canzhi Jin & Jianmu Su & Jinpu Wei & Xinyue Luo & Jiawen Wen & Tong Wei & Sunil Kumar Sahu & Hongfeng Zou & Hongyun Chen & Zhixin Mu & Gengyun Zhang & Xin Liu & , 2022. "GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Xiaogang Li & Dele Chen & Víctor J. Carrión & Daniel Revillini & Shan Yin & Yuanhua Dong & Taolin Zhang & Xingxiang Wang & Manuel Delgado-Baquerizo, 2023. "Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Cheng Gao & Ling Xu & Liliam Montoya & Mary Madera & Joy Hollingsworth & Liang Chen & Elizabeth Purdom & Vasanth Singan & John Vogel & Robert B. Hutmacher & Jeffery A. Dahlberg & Devin Coleman-Derr & , 2022. "Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Frederickson Entila & Xiaowei Han & Akira Mine & Paul Schulze-Lefert & Kenichi Tsuda, 2024. "Commensal lifestyle regulated by a negative feedback loop between Arabidopsis ROS and the bacterial T2SS," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Nathan Vannier & Fantin Mesny & Felix Getzke & Guillaume Chesneau & Laura Dethier & Jana Ordon & Thorsten Thiergart & Stéphane Hacquard, 2023. "Genome-resolved metatranscriptomics reveals conserved root colonization determinants in a synthetic microbiota," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Carmen Escudero-Martinez & Max Coulter & Rodrigo Alegria Terrazas & Alexandre Foito & Rumana Kapadia & Laura Pietrangelo & Mauro Maver & Rajiv Sharma & Alessio Aprile & Jenny Morris & Pete E. Hedley &, 2022. "Identifying plant genes shaping microbiota composition in the barley rhizosphere," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Yukari Nagatoshi & Kenta Ikazaki & Yasufumi Kobayashi & Nobuyuki Mizuno & Ryohei Sugita & Yumiko Takebayashi & Mikiko Kojima & Hitoshi Sakakibara & Natsuko I. Kobayashi & Keitaro Tanoi & Kenichiro Fuj, 2023. "Phosphate starvation response precedes abscisic acid response under progressive mild drought in plants," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    11. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Ang Liu & Yaqian Zhao & Yamei Cai & Peiying Kang & Yulong Huang & Min Li & Anran Yang, 2023. "Towards Effective, Sustainable Solution for Hospital Wastewater Treatment to Cope with the Post-Pandemic Era," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    13. Zhaohui Cao & Wenlong Zuo & Lanxiang Wang & Junyu Chen & Zepeng Qu & Fan Jin & Lei Dai, 2023. "Spatial profiling of microbial communities by sequential FISH with error-robust encoding," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Mathilde Chomel & Jocelyn M. Lavallee & Nil Alvarez-Segura & Elizabeth M. Baggs & Tancredi Caruso & Francisco Castro & Mark C. Emmerson & Matthew Magilton & Jennifer M. Rhymes & Franciska T. Vries & D, 2022. "Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Guy Amit & Amir Bashan, 2023. "Top-down identification of keystone taxa in the microbiome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Mingxing Wang & An-Hui Ge & Xingzhu Ma & Xiaolin Wang & Qiujin Xie & Like Wang & Xianwei Song & Mengchen Jiang & Weibing Yang & Jeremy D. Murray & Yayu Wang & Huan Liu & Xiaofeng Cao & Ertao Wang, 2024. "Dynamic root microbiome sustains soybean productivity under unbalanced fertilization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Ugo De Corato, 2020. "Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review," Sustainability, MDPI, vol. 13(1), pages 1-41, December.
    18. Jing Liang & Jiafan Zhang & Zongmu Yao & Shouyang Luo & Lei Tian & Chunjie Tian & Yu Sun, 2022. "Preliminary Findings of Polypropylene Carbonate (PPC) Plastic Film Mulching Effects on the Soil Microbial Community," Agriculture, MDPI, vol. 12(3), pages 1-13, March.
    19. Tao Wen & Penghao Xie & Hongwei Liu & Ting Liu & Mengli Zhao & Shengdie Yang & Guoqing Niu & Lauren Hale & Brajesh K. Singh & George A. Kowalchuk & Qirong Shen & Jun Yuan, 2023. "Tapping the rhizosphere metabolites for the prebiotic control of soil-borne bacterial wilt disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Beatriz Val-Torregrosa & Mireia Bundó & Blanca San Segundo, 2021. "Crosstalk between Nutrient Signalling Pathways and Immune Responses in Rice," Agriculture, MDPI, vol. 11(8), pages 1-21, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35452-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.