IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9413.html
   My bibliography  Save this article

Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health

Author

Listed:
  • Zhong Wei

    (Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China)

  • Tianjie Yang

    (Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China)

  • Ville-Petri Friman

    (Imperial College London, Silwood Park Campus
    University of York, Wentworth Way)

  • Yangchun Xu

    (Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China)

  • Qirong Shen

    (Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China)

  • Alexandre Jousset

    (Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
    Institute for Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands)

Abstract

Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity–invasion resistance relationships in bacterial rhizosphere communities.

Suggested Citation

  • Zhong Wei & Tianjie Yang & Ville-Petri Friman & Yangchun Xu & Qirong Shen & Alexandre Jousset, 2015. "Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9413
    DOI: 10.1038/ncomms9413
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9413
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Chengyao Xia & Yuqiang Zhao & Lei Zhang & Xu Li & Yang Cheng & Dongming Wang & Changsheng Xu & Mengyi Qi & Jihong Wang & Xiangrui Guo & Xianfeng Ye & Yan Huang & Danyu Shen & Daolong Dou & Hui Cao & Z, 2023. "Myxobacteria restrain Phytophthora invasion by scavenging thiamine in soybean rhizosphere via outer membrane vesicle-secreted thiaminase I," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Ugo De Corato, 2020. "Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review," Sustainability, MDPI, vol. 13(1), pages 1-41, December.
    4. Xiaogang Li & Dele Chen & Víctor J. Carrión & Daniel Revillini & Shan Yin & Yuanhua Dong & Taolin Zhang & Xingxiang Wang & Manuel Delgado-Baquerizo, 2023. "Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Xin Zhou & Jinting Wang & Fang Liu & Junmin Liang & Peng Zhao & Clement K. M. Tsui & Lei Cai, 2022. "Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Liu, Xiaoqian & Bearup, Daniel & Liao, Jinbao, 2022. "Metacommunity robustness to invasion in mutualistic and antagonistic networks," Ecological Modelling, Elsevier, vol. 468(C).
    7. Tao Wen & Penghao Xie & Hongwei Liu & Ting Liu & Mengli Zhao & Shengdie Yang & Guoqing Niu & Lauren Hale & Brajesh K. Singh & George A. Kowalchuk & Qirong Shen & Jun Yuan, 2023. "Tapping the rhizosphere metabolites for the prebiotic control of soil-borne bacterial wilt disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.