IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32752-9.html
   My bibliography  Save this article

Structure and activity of particulate methane monooxygenase arrays in methanotrophs

Author

Listed:
  • Yanan Zhu

    (University of Oxford)

  • Christopher W. Koo

    (Northwestern University)

  • C. Keith Cassidy

    (University of Oxford)

  • Matthew C. Spink

    (Diamond Light Source, Harwell Science and Innovation Campus)

  • Tao Ni

    (University of Oxford)

  • Laura C. Zanetti-Domingues

    (Rutherford Appleton Laboratory)

  • Benji Bateman

    (Rutherford Appleton Laboratory)

  • Marisa L. Martin-Fernandez

    (Rutherford Appleton Laboratory)

  • Juan Shen

    (University of Oxford)

  • Yuewen Sheng

    (Diamond Light Source, Harwell Science and Innovation Campus)

  • Yun Song

    (Diamond Light Source, Harwell Science and Innovation Campus)

  • Zhengyi Yang

    (Diamond Light Source, Harwell Science and Innovation Campus
    European Molecular Biology Laboratory)

  • Amy C. Rosenzweig

    (Northwestern University)

  • Peijun Zhang

    (University of Oxford
    Diamond Light Source, Harwell Science and Innovation Campus
    University of Oxford)

Abstract

Methane-oxidizing bacteria play a central role in greenhouse gas mitigation and have potential applications in biomanufacturing. Their primary metabolic enzyme, particulate methane monooxygenase (pMMO), is housed in copper-induced intracytoplasmic membranes (ICMs), of which the function and biogenesis are not known. We show by serial cryo-focused ion beam (cryoFIB) milling/scanning electron microscope (SEM) volume imaging and lamellae-based cellular cryo-electron tomography (cryoET) that these ICMs are derived from the inner cell membrane. The pMMO trimer, resolved by cryoET and subtomogram averaging to 4.8 Å in the ICM, forms higher-order hexagonal arrays in intact cells. Array formation correlates with increased enzymatic activity, highlighting the importance of studying the enzyme in its native environment. These findings also demonstrate the power of cryoET to structurally characterize native membrane enzymes in the cellular context.

Suggested Citation

  • Yanan Zhu & Christopher W. Koo & C. Keith Cassidy & Matthew C. Spink & Tao Ni & Laura C. Zanetti-Domingues & Benji Bateman & Marisa L. Martin-Fernandez & Juan Shen & Yuewen Sheng & Yun Song & Zhengyi , 2022. "Structure and activity of particulate methane monooxygenase arrays in methanotrophs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32752-9
    DOI: 10.1038/s41467-022-32752-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32752-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32752-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ricardo M. Sanchez & Yingyi Zhang & Wenbo Chen & Lea Dietrich & Mikhail Kudryashev, 2020. "Subnanometer-resolution structure determination in situ by hybrid subtomogram averaging - single particle cryo-EM," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    2. Raquel L. Lieberman & Amy C. Rosenzweig, 2005. "Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane," Nature, Nature, vol. 434(7030), pages 177-182, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotaro Kelley & Ashleigh M. Raczkowski & Oleg Klykov & Pattana Jaroenlak & Daija Bobe & Mykhailo Kopylov & Edward T. Eng & Gira Bhabha & Clinton S. Potter & Bridget Carragher & Alex J. Noble, 2022. "Waffle Method: A general and flexible approach for improving throughput in FIB-milling," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Shouwen Du & Ruchao Peng & Wang Xu & Xiaoyun Qu & Yuhang Wang & Jiamin Wang & Letian Li & Mingyao Tian & Yudong Guan & Jigang Wang & Guoqing Wang & Hao Li & Lingcong Deng & Xiaoshuang Shi & Yidan Ma &, 2023. "Cryo-EM structure of severe fever with thrombocytopenia syndrome virus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Nikita Balyschew & Artsemi Yushkevich & Vasilii Mikirtumov & Ricardo M. Sanchez & Thiemo Sprink & Mikhail Kudryashev, 2023. "Streamlined structure determination by cryo-electron tomography and subtomogram averaging using TomoBEAR," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Jing Cheng & Tong Liu & Xin You & Fa Zhang & Sen-Fang Sui & Xiaohua Wan & Xinzheng Zhang, 2023. "Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Hailong Zhang & Peijie Han & Danfeng Wu & Congcong Du & Jiafei Zhao & Kelvin H. L. Zhang & Jingdong Lin & Shaolong Wan & Jianyu Huang & Shuai Wang & Haifeng Xiong & Yong Wang, 2023. "Confined Cu-OH single sites in SSZ-13 zeolite for the direct oxidation of methane to methanol," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32752-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.