IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29501-3.html
   My bibliography  Save this article

Waffle Method: A general and flexible approach for improving throughput in FIB-milling

Author

Listed:
  • Kotaro Kelley

    (National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center)

  • Ashleigh M. Raczkowski

    (National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center
    University of Michigan)

  • Oleg Klykov

    (National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center
    Columbia University)

  • Pattana Jaroenlak

    (New York University School of Medicine)

  • Daija Bobe

    (National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center)

  • Mykhailo Kopylov

    (National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center)

  • Edward T. Eng

    (National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center)

  • Gira Bhabha

    (New York University School of Medicine)

  • Clinton S. Potter

    (National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center
    Columbia University)

  • Bridget Carragher

    (National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center
    New York University School of Medicine)

  • Alex J. Noble

    (National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center)

Abstract

Cryo-FIB/SEM combined with cryo-ET has emerged from within the field of cryo-EM as the method for obtaining the highest resolution structural information of complex biological samples in-situ in native and non-native environments. However, challenges remain in conventional cryo-FIB/SEM workflows, including milling thick specimens with vitrification issues, specimens with preferred orientation, low-throughput when milling small and/or low concentration specimens, and specimens that distribute poorly across grid squares. Here we present a general approach called the ‘Waffle Method’ which leverages high-pressure freezing to address these challenges. We illustrate the mitigation of these challenges by applying the Waffle Method and cryo-ET to reveal the macrostructure of the polar tube in microsporidian spores in multiple complementary orientations, which was previously not possible due to preferred orientation. We demonstrate the broadness of the Waffle Method by applying it to three additional cellular samples and a single particle sample using a variety of cryo-FIB-milling hardware, with manual and automated approaches. We also present a unique and critical stress-relief gap designed specifically for waffled lamellae. We propose the Waffle Method as a way to achieve many advantages of cryo-liftout on the specimen grid while avoiding the long, challenging, and technically-demanding process required for cryo-liftout.

Suggested Citation

  • Kotaro Kelley & Ashleigh M. Raczkowski & Oleg Klykov & Pattana Jaroenlak & Daija Bobe & Mykhailo Kopylov & Edward T. Eng & Gira Bhabha & Clinton S. Potter & Bridget Carragher & Alex J. Noble, 2022. "Waffle Method: A general and flexible approach for improving throughput in FIB-milling," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29501-3
    DOI: 10.1038/s41467-022-29501-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29501-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29501-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tristan Bepler & Kotaro Kelley & Alex J. Noble & Bonnie Berger, 2020. "Topaz-Denoise: general deep denoising models for cryoEM and cryoET," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Ricardo M. Sanchez & Yingyi Zhang & Wenbo Chen & Lea Dietrich & Mikhail Kudryashev, 2020. "Subnanometer-resolution structure determination in situ by hybrid subtomogram averaging - single particle cryo-EM," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Zhang & Tianfang Zhao & Jiansheng Chen & Yuan Shen & Xueming Li, 2022. "EPicker is an exemplar-based continual learning approach for knowledge accumulation in cryoEM particle picking," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yanan Zhu & Christopher W. Koo & C. Keith Cassidy & Matthew C. Spink & Tao Ni & Laura C. Zanetti-Domingues & Benji Bateman & Marisa L. Martin-Fernandez & Juan Shen & Yuewen Sheng & Yun Song & Zhengyi , 2022. "Structure and activity of particulate methane monooxygenase arrays in methanotrophs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Luka Bacic & Guillaume Gaullier & Jugal Mohapatra & Guanzhong Mao & Klaus Brackmann & Mikhail Panfilov & Glen Liszczak & Anton Sabantsev & Sebastian Deindl, 2024. "Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Sriram Aiyer & Philip R. Baldwin & Shi Min Tan & Zelin Shan & Juntaek Oh & Atousa Mehrani & Marianne E. Bowman & Gordon Louie & Dario Oliveira Passos & Selena Đorđević-Marquardt & Mario Mietzsch & Jos, 2024. "Overcoming resolution attenuation during tilted cryo-EM data collection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Benjamin C. Creekmore & Kathryn Kixmoeller & Ben E. Black & Edward B. Lee & Yi-Wei Chang, 2024. "Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Kathryn H. Gunn & Saskia B. Neher, 2023. "Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Ryo Nagao & Koji Kato & Tasuku Hamaguchi & Yoshifumi Ueno & Naoki Tsuboshita & Shota Shimizu & Miyu Furutani & Shigeki Ehira & Yoshiki Nakajima & Keisuke Kawakami & Takehiro Suzuki & Naoshi Dohmae & S, 2023. "Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Riley D. Metcalfe & Juliana A. Martinez Fiesco & Luis Bonet-Ponce & Jillian H. Kluss & Mark R. Cookson & Ping Zhang, 2023. "Structure and regulation of full-length human leucine-rich repeat kinase 1," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. J. Josephine Botsch & Roswitha Junker & Michèle Sorgenfrei & Patricia P. Ogger & Luca Stier & Susanne Gronau & Peter J. Murray & Markus A. Seeger & Brenda A. Schulman & Bastian Bräuning, 2024. "Doa10/MARCH6 architecture interconnects E3 ligase activity with lipid-binding transmembrane channel to regulate SQLE," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Melanie Arndt & Carolina Alvadia & Monique S. Straub & Vanessa Clerico Mosina & Cristina Paulino & Raimund Dutzler, 2022. "Structural basis for the activation of the lipid scramblase TMEM16F," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Shouwen Du & Ruchao Peng & Wang Xu & Xiaoyun Qu & Yuhang Wang & Jiamin Wang & Letian Li & Mingyao Tian & Yudong Guan & Jigang Wang & Guoqing Wang & Hao Li & Lingcong Deng & Xiaoshuang Shi & Yidan Ma &, 2023. "Cryo-EM structure of severe fever with thrombocytopenia syndrome virus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Alexander Domnick & Christian Winter & Lukas Sušac & Leon Hennecke & Mario Hensen & Nicole Zitzmann & Simon Trowitzsch & Christoph Thomas & Robert Tampé, 2022. "Molecular basis of MHC I quality control in the peptide loading complex," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Dohyun Im & Jun-ichi Kishikawa & Yuki Shiimura & Hiromi Hisano & Akane Ito & Yoko Fujita-Fujiharu & Yukihiko Sugita & Takeshi Noda & Takayuki Kato & Hidetsugu Asada & So Iwata, 2023. "Structural insights into the agonists binding and receptor selectivity of human histamine H4 receptor," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Nikita Balyschew & Artsemi Yushkevich & Vasilii Mikirtumov & Ricardo M. Sanchez & Thiemo Sprink & Mikhail Kudryashev, 2023. "Streamlined structure determination by cryo-electron tomography and subtomogram averaging using TomoBEAR," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Hongcheng Fan & Bo Wang & Yan Zhang & Yun Zhu & Bo Song & Haijin Xu & Yujia Zhai & Mingqiang Qiao & Fei Sun, 2021. "A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    16. Yun-Tao Liu & Heng Zhang & Hui Wang & Chang-Lu Tao & Guo-Qiang Bi & Z. Hong Zhou, 2022. "Isotropic reconstruction for electron tomography with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. Jing Cheng & Tong Liu & Xin You & Fa Zhang & Sen-Fang Sui & Xiaohua Wan & Xinzheng Zhang, 2023. "Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Qiansheng Liang & Gamma Chi & Leonardo Cirqueira & Lianteng Zhi & Agostino Marasco & Nadia Pilati & Martin J. Gunthorpe & Giuseppe Alvaro & Charles H. Large & David B. Sauer & Werner Treptow & Manuel , 2024. "The binding and mechanism of a positive allosteric modulator of Kv3 channels," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Felix J. Metzner & Simon J. Wenzl & Michael Kugler & Stefan Krebs & Karl-Peter Hopfner & Katja Lammens, 2022. "Mechanistic understanding of human SLFN11," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Fengfeng Niu & Lingxuan Li & Lei Wang & Jinman Xiao & Shun Xu & Yong Liu & Leishu Lin & Cong Yu & Zhiyi Wei, 2024. "Autoinhibition and activation of myosin VI revealed by its cryo-EM structure," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29501-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.