IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31349-6.html
   My bibliography  Save this article

The ω3 scaling of the vibrational density of states in quasi-2D nanoconfined solids

Author

Listed:
  • Yuanxi Yu

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Chenxing Yang

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Matteo Baggioli

    (Shanghai Jiao Tong University
    Shanghai Research Center for Quantum Sciences)

  • Anthony E. Phillips

    (Queen Mary University of London)

  • Alessio Zaccone

    (University of Milan
    University of Cambridge)

  • Lei Zhang

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Ryoichi Kajimoto

    (Japan Atomic Energy Agency (JAEA))

  • Mitsutaka Nakamura

    (Japan Atomic Energy Agency (JAEA))

  • Dehong Yu

    (Australian Nuclear Science and Technology Organisation)

  • Liang Hong

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University
    Shanghai Jiao Tong University
    Shanghai Artificial Intelligence Laboratory)

Abstract

The vibrational properties of crystalline bulk materials are well described by Debye theory, which successfully predicts the quadratic ω2 low-frequency scaling of the vibrational density of states. However, the analogous framework for nanoconfined materials with fewer degrees of freedom has been far less well explored. Using inelastic neutron scattering, we characterize the vibrational density of states of amorphous ice confined inside graphene oxide membranes and we observe a crossover from the Debye ω2 scaling to an anomalous ω3 behaviour upon reducing the confinement size L. Additionally, using molecular dynamics simulations, we confirm the experimental findings and prove that such a scaling appears in both crystalline and amorphous solids under slab-confinement. We theoretically demonstrate that this low-frequency ω3 law results from the geometric constraints on the momentum phase space induced by confinement along one spatial direction. Finally, we predict that the Debye scaling reappears at a characteristic frequency ω× = vL/2π, with v the speed of sound of the material, and we confirm this quantitative estimate with simulations.

Suggested Citation

  • Yuanxi Yu & Chenxing Yang & Matteo Baggioli & Anthony E. Phillips & Alessio Zaccone & Lei Zhang & Ryoichi Kajimoto & Mitsutaka Nakamura & Dehong Yu & Liang Hong, 2022. "The ω3 scaling of the vibrational density of states in quasi-2D nanoconfined solids," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31349-6
    DOI: 10.1038/s41467-022-31349-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31349-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31349-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Florian Garczarek & Klaus Gerwert, 2006. "Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy," Nature, Nature, vol. 439(7072), pages 109-112, January.
    2. Ken-ichi Otake & Kazuya Otsubo & Tokutaro Komatsu & Shun Dekura & Jared M. Taylor & Ryuichi Ikeda & Kunihisa Sugimoto & Akihiko Fujiwara & Chien-Pin Chou & Aditya Wibawa Sakti & Yoshifumi Nishimura & , 2020. "Confined water-mediated high proton conduction in hydrophobic channel of a synthetic nanotube," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. Deborah Ortiz-Young & Hsiang-Chih Chiu & Suenne Kim & Kislon Voïtchovsky & Elisa Riedo, 2013. "The interplay between apparent viscosity and wettability in nanoconfined water," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    4. Liang Chen & Guosheng Shi & Jie Shen & Bingquan Peng & Bowu Zhang & Yuzhu Wang & Fenggang Bian & Jiajun Wang & Deyuan Li & Zhe Qian & Gang Xu & Gongping Liu & Jianrong Zeng & Lijuan Zhang & Yizhou Yan, 2017. "Ion sieving in graphene oxide membranes via cationic control of interlayer spacing," Nature, Nature, vol. 550(7676), pages 380-383, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhipeng Wang & Liqin Huang & Xue Dong & Tong Wu & Qi Qing & Jing Chen & Yuexiang Lu & Chao Xu, 2023. "Ion sieving in graphene oxide membrane enables efficient actinides/lanthanides separation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Quan Peng & Ruoyu Wang & Zilin Zhao & Shihong Lin & Ying Liu & Dianyu Dong & Zheng Wang & Yiman He & Yuzhang Zhu & Jian Jin & Lei Jiang, 2024. "Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Xinyue Wen & Tobias Foller & Xiaoheng Jin & Tiziana Musso & Priyank Kumar & Rakesh Joshi, 2022. "Understanding water transport through graphene-based nanochannels via experimental control of slip length," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Hongjian Wang & Yeming Zhai & Yang Li & Yu Cao & Benbing Shi & Runlai Li & Zingting Zhu & Haifei Jiang & Zheyuan Guo & Meidi Wang & Long Chen & Yawei Liu & Kai-Ge Zhou & Fusheng Pan & Zhongyi Jiang, 2022. "Covalent organic framework membranes for efficient separation of monovalent cations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Jun-Xiang Xiang & Ze Liu, 2022. "Observation of enhanced nanoscale creep flow of crystalline metals enabled by controlling surface wettability," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Qian Zhang & Bo Gao & Ling Zhang & Xiaopeng Liu & Jixiang Cui & Yijun Cao & Hongbo Zeng & Qun Xu & Xinwei Cui & Lei Jiang, 2023. "Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Zhen Zhang & Preeti Bhauriyal & Hafeesudeen Sahabudeen & Zhiyong Wang & Xiaohui Liu & Mike Hambsch & Stefan C. B. Mannsfeld & Renhao Dong & Thomas Heine & Xinliang Feng, 2022. "Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Yang Wang & Tingting Lian & Nadezda V. Tarakina & Jiayin Yuan & Markus Antonietti, 2022. "Lamellar carbon nitride membrane for enhanced ion sieving and water desalination," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Yuan Kang & Ting Hu & Yuqi Wang & Kaiqiang He & Zhuyuan Wang & Yvonne Hora & Wang Zhao & Rongming Xu & Yu Chen & Zongli Xie & Huanting Wang & Qinfen Gu & Xiwang Zhang, 2023. "Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Rezakazemi, Mashallah & Arabi Shamsabadi, Ahmad & Lin, Haiqing & Luis, Patricia & Ramakrishna, Seeram & Aminabhavi, Tejraj M., 2021. "Sustainable MXenes-based membranes for highly energy-efficient separations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Ri-Jian Mo & Shuang Chen & Li-Qiu Huang & Xin-Lei Ding & Saima Rafique & Xing-Hua Xia & Zhong-Qiu Li, 2024. "Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Zhangcai Zhang & Lixin Liang & Jianze Feng & Guangjin Hou & Wencai Ren, 2024. "Significant enhancement of proton conductivity in solid acid at the monolayer limit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Chai, Rukuan & Liu, Yuetian & Xue, Liang & Rui, Zhenhua & Zhao, Ruicheng & Wang, Jingru, 2022. "Formation damage of sandstone geothermal reservoirs: During decreased salinity water injection," Applied Energy, Elsevier, vol. 322(C).
    14. Rongming Xu & Yuan Kang & Weiming Zhang & Bingcai Pan & Xiwang Zhang, 2023. "Two-dimensional MXene membranes with biomimetic sub-nanochannels for enhanced cation sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Shuangqiao Han & Junyong Zhu & Adam A. Uliana & Dongyang Li & Yatao Zhang & Lin Zhang & Yong Wang & Tao He & Menachem Elimelech, 2022. "Microporous organic nanotube assisted design of high performance nanofiltration membranes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Tian, Weibing & Wu, Keliu & Feng, Dong & Gao, Yanling & Li, Jing & Chen, Zhangxin, 2023. "Dynamic contact angle effect on water-oil imbibition in tight oil reservoirs," Energy, Elsevier, vol. 284(C).
    17. Benbing Shi & Xiao Pang & Shunning Li & Hong Wu & Jianliang Shen & Xiaoyao Wang & Chunyang Fan & Li Cao & Tianhao Zhu & Ming Qiu & Zhuoyu Yin & Yan Kong & Yiqin Liu & Mingzheng Zhang & Yawei Liu & Fen, 2022. "Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Xin Yu & Wencai Ren, 2023. "2D CdPS3-based versatile superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Changwei Zhao & Yanjun Zhang & Yuewen Jia & Bojun Li & Wenjing Tang & Chuning Shang & Rui Mo & Pei Li & Shaomin Liu & Sui Zhang, 2023. "Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Nawapong Unsuree & Sorasak Phanphak & Pongthep Prajongtat & Aritsa Bunpheng & Kulpavee Jitapunkul & Pornpis Kongputhon & Pannaree Srinoi & Pawin Iamprasertkun & Wisit Hirunpinyopas, 2021. "A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives," Energies, MDPI, vol. 14(18), pages 1-38, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31349-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.