IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30064-6.html
   My bibliography  Save this article

Efficient and stable noble-metal-free catalyst for acidic water oxidation

Author

Listed:
  • Sanjiang Pan

    (Solar Energy Research Center, Nankai University
    Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin
    Haihe Laboratory of Sustainable Chemical Transformations
    Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education)

  • Hao Li

    (Tohoku University)

  • Dan Liu

    (Northwestern Polytechnical University (NPU))

  • Rui Huang

    (Fudan University)

  • Xuelei Pan

    (Wuhan University of Technology)

  • Dan Ren

    (Ecole Polytechnique Federale de Lausanne)

  • Jun Li

    (Ecole Polytechnique Federale de Lausanne)

  • Mohsen Shakouri

    (Canadian Light Source, Inc. (CLSI))

  • Qixing Zhang

    (Solar Energy Research Center, Nankai University
    Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin
    Haihe Laboratory of Sustainable Chemical Transformations
    Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education)

  • Manjing Wang

    (Solar Energy Research Center, Nankai University
    Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin
    Haihe Laboratory of Sustainable Chemical Transformations
    Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education)

  • Changchun Wei

    (Solar Energy Research Center, Nankai University
    Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin
    Haihe Laboratory of Sustainable Chemical Transformations
    Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education)

  • Liqiang Mai

    (Wuhan University of Technology)

  • Bo Zhang

    (Fudan University)

  • Ying Zhao

    (Solar Energy Research Center, Nankai University
    Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin
    Haihe Laboratory of Sustainable Chemical Transformations
    Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education)

  • Zhenbin Wang

    (Technical University of Denmark)

  • Michael Graetzel

    (Solar Energy Research Center, Nankai University
    Ecole Polytechnique Federale de Lausanne)

  • Xiaodan Zhang

    (Solar Energy Research Center, Nankai University
    Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin
    Haihe Laboratory of Sustainable Chemical Transformations
    Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education)

Abstract

Developing non-noble catalysts with superior activity and durability for oxygen evolution reaction (OER) in acidic media is paramount for hydrogen production from water. Still, challenges remain due to the inadequate activity and stability of the OER catalyst. Here, we report a cost-effective and stable manganese oxybromide (Mn7.5O10Br3) catalyst exhibiting an excellent OER activity in acidic electrolytes, with an overpotential of as low as 295 ± 5 mV at a current density of 10 mA cm−2. Mn7.5O10Br3 maintains good stability under operating conditions for at least 500 h. In situ Raman spectroscopy, X ray absorption near edge spectroscopy, and density functional theory calculations confirm that a self-oxidized surface with enhanced electronic transmission capacity forms on Mn7.5O10Br3 and is responsible for both the high catalytic activity and long-term stability during catalysis. The development of Mn7.5O10Br3 as an OER catalyst provides crucial insights into the design of non-noble metal electrocatalysts for water oxidation.

Suggested Citation

  • Sanjiang Pan & Hao Li & Dan Liu & Rui Huang & Xuelei Pan & Dan Ren & Jun Li & Mohsen Shakouri & Qixing Zhang & Manjing Wang & Changchun Wei & Liqiang Mai & Bo Zhang & Ying Zhao & Zhenbin Wang & Michae, 2022. "Efficient and stable noble-metal-free catalyst for acidic water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30064-6
    DOI: 10.1038/s41467-022-30064-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30064-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30064-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oscar Diaz-Morales & Stefan Raaijman & Ruud Kortlever & Patricia J. Kooyman & Tim Wezendonk & Jorge Gascon & W. T. Fu & Marc T. M. Koper, 2016. "Iridium-based double perovskites for efficient water oxidation in acid media," Nature Communications, Nature, vol. 7(1), pages 1-6, November.
    2. Yichao Lin & Ziqi Tian & Linjuan Zhang & Jingyuan Ma & Zheng Jiang & Benjamin J. Deibert & Ruixiang Ge & Liang Chen, 2019. "Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    3. Fang Song & Xile Hu, 2014. "Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Du & Lifu Zhang & Jieqiong Shan & Jiaxin Guo & Jing Mao & Chueh-Cheng Yang & Chia-Hsin Wang & Zhenpeng Hu & Tao Ling, 2022. "Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Nihat Ege Sahin & W. J. Pech-Rodríguez & P. C. Meléndez-González & Juan Lopez Hernández & E. Rocha-Rangel, 2023. "Water Splitting as an Alternative for Electrochemical Hydrogen and Oxygen Generation: Current Status, Trends, and Challenges," Energies, MDPI, vol. 16(13), pages 1-25, June.
    3. Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Gang Zhou & Peifang Wang & Bin Hu & Xinyue Shen & Chongchong Liu & Weixiang Tao & Peilin Huang & Lizhe Liu, 2022. "Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Fangqing Wang & Peichao Zou & Yangyang Zhang & Wenli Pan & Ying Li & Limin Liang & Cong Chen & Hui Liu & Shijian Zheng, 2023. "Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yunchang Liang & Karla Banjac & Kévin Martin & Nicolas Zigon & Seunghwa Lee & Nicolas Vanthuyne & Felipe Andrés Garcés-Pineda & José R. Galán-Mascarós & Xile Hu & Narcis Avarvari & Magalí Lingenfelder, 2022. "Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Jiayi Chen & Mohammed Aliasgar & Fernando Buendia Zamudio & Tianyu Zhang & Yilin Zhao & Xu Lian & Lan Wen & Haozhou Yang & Wenping Sun & Sergey M. Kozlov & Wei Chen & Lei Wang, 2023. "Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Zuraya Angeles-Olvera & Alfonso Crespo-Yapur & Oliver Rodríguez & Jorge L. Cholula-Díaz & Luz María Martínez & Marcelo Videa, 2022. "Nickel-Based Electrocatalysts for Water Electrolysis," Energies, MDPI, vol. 15(5), pages 1-35, February.
    10. Yanrong Xue & Jiwu Zhao & Liang Huang & Ying-Rui Lu & Abdul Malek & Ge Gao & Zhongbin Zhuang & Dingsheng Wang & Cafer T. Yavuz & Xu Lu, 2023. "Stabilizing ruthenium dioxide with cation-anchored sulfate for durable oxygen evolution in proton-exchange membrane water electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Huanyu Jin & Xinyan Liu & Pengfei An & Cheng Tang & Huimin Yu & Qinghua Zhang & Hong-Jie Peng & Lin Gu & Yao Zheng & Taeseup Song & Kenneth Davey & Ungyu Paik & Juncai Dong & Shi-Zhang Qiao, 2023. "Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. María Retuerto & Laura Pascual & Jorge Torrero & Mohamed Abdel Salam & Álvaro Tolosana-Moranchel & Diego Gianolio & Pilar Ferrer & Paula Kayser & Vincent Wilke & Svenja Stiber & Verónica Celorrio & Mo, 2022. "Highly active and stable OER electrocatalysts derived from Sr2MIrO6 for proton exchange membrane water electrolyzers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Dmitry Galyamin & Jorge Torrero & Isabel Rodríguez & Manuel J. Kolb & Pilar Ferrer & Laura Pascual & Mohamed Abdel Salam & Diego Gianolio & Verónica Celorrio & Mohamed Mokhtar & Daniel Garcia Sanchez , 2023. "Active and durable R2MnRuO7 pyrochlores with low Ru content for acidic oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Dafeng Zhang & Mengnan Li & Xue Yong & Haoqiang Song & Geoffrey I. N. Waterhouse & Yunfei Yi & Bingjie Xue & Dongliang Zhang & Baozhong Liu & Siyu Lu, 2023. "Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Ding Chen & Ruohan Yu & Kesong Yu & Ruihu Lu & Hongyu Zhao & Jixiang Jiao & Youtao Yao & Jiawei Zhu & Jinsong Wu & Shichun Mu, 2024. "Bicontinuous RuO2 nanoreactors for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Lingyou Zeng & Zhonglong Zhao & Fan Lv & Zhonghong Xia & Shi-Yu Lu & Jiong Li & Kaian Sun & Kai Wang & Yingjun Sun & Qizheng Huang & Yan Chen & Qinghua Zhang & Lin Gu & Gang Lu & Shaojun Guo, 2022. "Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Sihong Wang & Qu Jiang & Shenghong Ju & Chia-Shuo Hsu & Hao Ming Chen & Di Zhang & Fang Song, 2022. "Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Michael High & Clemens F. Patzschke & Liya Zheng & Dewang Zeng & Oriol Gavalda-Diaz & Nan Ding & Ka Ho Horace Chien & Zili Zhang & George E. Wilson & Andrey V. Berenov & Stephen J. Skinner & Kyra L. S, 2022. "Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Zhang, Yuanyuan & Sun, Haohao & Qiu, Yunfeng & Zhang, Enhao & Ma, Tiange & Gao, Guang-gang & Cao, Changyan & Ma, Zhuo & Hu, PingAn, 2018. "Bifunctional hydrogen evolution and oxygen evolution catalysis using CoP-embedded N-doped nanoporous carbon synthesized via TEOS-assisted method," Energy, Elsevier, vol. 165(PB), pages 537-548.
    20. Yi Wang & Rong Yang & Yajun Ding & Bo Zhang & Hao Li & Bing Bai & Mingrun Li & Yi Cui & Jianping Xiao & Zhong-Shuai Wu, 2023. "Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30064-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.