IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29929-7.html
   My bibliography  Save this article

Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution

Author

Listed:
  • Jie Xu

    (Soochow University)

  • Gonglei Shao

    (Hunan University
    Zhengzhou University)

  • Xuan Tang

    (East China University of Science & Technology)

  • Fang Lv

    (Soochow University)

  • Haiyan Xiang

    (Hunan University)

  • Changfei Jing

    (Tianjin University of Technology)

  • Song Liu

    (Hunan University)

  • Sheng Dai

    (East China University of Science & Technology)

  • Yanguang Li

    (Soochow University)

  • Jun Luo

    (Tianjin University of Technology)

  • Zhen Zhou

    (Zhengzhou University)

Abstract

Defect engineering is an effective strategy to improve the activity of two-dimensional molybdenum disulfide base planes toward electrocatalytic hydrogen evolution reaction. Here, we report a Frenkel-defected monolayer MoS2 catalyst, in which a fraction of Mo atoms in MoS2 spontaneously leave their places in the lattice, creating vacancies and becoming interstitials by lodging in nearby locations. Unique charge distributions are introduced in the MoS2 surface planes, and those interstitial Mo atoms are more conducive to H adsorption, thus greatly promoting the HER activity of monolayer MoS2 base planes. At the current density of 10 mA cm−2, the optimal Frenkel-defected monolayer MoS2 exhibits a lower overpotential (164 mV) than either pristine monolayer MoS2 surface plane (358 mV) or Pt-single-atom doped MoS2 (211 mV). This work provides insights into the structure-property relationship of point-defected MoS2 and highlights the advantages of Frenkel defects in tuning the catalytic performance of MoS2 materials.

Suggested Citation

  • Jie Xu & Gonglei Shao & Xuan Tang & Fang Lv & Haiyan Xiang & Changfei Jing & Song Liu & Sheng Dai & Yanguang Li & Jun Luo & Zhen Zhou, 2022. "Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29929-7
    DOI: 10.1038/s41467-022-29929-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29929-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29929-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kang Jiang & Min Luo & Zhixiao Liu & Ming Peng & Dechao Chen & Ying-Rui Lu & Ting-Shan Chan & Frank M. F. Groot & Yongwen Tan, 2021. "Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Jianqi Zhu & Zhi-Chang Wang & Huijia Dai & Qinqin Wang & Rong Yang & Hua Yu & Mengzhou Liao & Jing Zhang & Wei Chen & Zheng Wei & Na Li & Luojun Du & Dongxia Shi & Wenlong Wang & Lixin Zhang & Ying Ji, 2019. "Boundary activated hydrogen evolution reaction on monolayer MoS2," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    3. Yipeng Zang & Shuwen Niu & Yishang Wu & Xusheng Zheng & Jinyan Cai & Jian Ye & Yufang Xie & Yun Liu & Jianbin Zhou & Junfa Zhu & Xiaojing Liu & Gongming Wang & Yitai Qian, 2019. "Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Yao Zhou & Jing Zhang & Erhong Song & Junhao Lin & Jiadong Zhou & Kazu Suenaga & Wu Zhou & Zheng Liu & Jianjun Liu & Jun Lou & Hong Jin Fan, 2020. "Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing-Wen Hsueh & Lai-Hsiang Kuo & Po-Han Chen & Wan-Hsin Chen & Chi-Yao Chuang & Chia-Nung Kuo & Chin-Shan Lue & Yu-Ling Lai & Bo-Hong Liu & Chia-Hsin Wang & Yao-Jane Hsu & Chun-Liang Lin & Jyh-Pin Ch, 2024. "Investigating the role of undercoordinated Pt sites at the surface of layered PtTe2 for methanol decomposition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Gonglei Shao & Changfei Jing & Zhinan Ma & Yuanyuan Li & Weiqi Dang & Dong Guo & Manman Wu & Song Liu & Xu Zhang & Kun He & Yifei Yuan & Jun Luo & Sheng Dai & Jie Xu & Zhen Zhou, 2024. "Dynamic coordination engineering of 2D PhenPtCl2 nanosheets for superior hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Jie Xu & Xiong-Xiong Xue & Gonglei Shao & Changfei Jing & Sheng Dai & Kun He & Peipei Jia & Shun Wang & Yifei Yuan & Jun Luo & Jun Lu, 2023. "Atomic-level polarization in electric fields of defects for electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Hang Xia & Xiaoru Sang & Zhiwen Shu & Zude Shi & Zefen Li & Shasha Guo & Xiuyun An & Caitian Gao & Fucai Liu & Huigao Duan & Zheng Liu & Yongmin He, 2023. "The practice of reaction window in an electrocatalytic on-chip microcell," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang Xia & Xiaoru Sang & Zhiwen Shu & Zude Shi & Zefen Li & Shasha Guo & Xiuyun An & Caitian Gao & Fucai Liu & Huigao Duan & Zheng Liu & Yongmin He, 2023. "The practice of reaction window in an electrocatalytic on-chip microcell," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Ruiling Zhang & Yaozhou Li & Xuan Zhou & Ao Yu & Qi Huang & Tingting Xu & Longtao Zhu & Ping Peng & Shuyan Song & Luis Echegoyen & Fang-Fang Li, 2023. "Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Jie Xu & Xiong-Xiong Xue & Gonglei Shao & Changfei Jing & Sheng Dai & Kun He & Peipei Jia & Shun Wang & Yifei Yuan & Jun Luo & Jun Lu, 2023. "Atomic-level polarization in electric fields of defects for electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Zhenglong Fan & Fan Liao & Yujin Ji & Yang Liu & Hui Huang & Dan Wang & Kui Yin & Haiwei Yang & Mengjie Ma & Wenxiang Zhu & Meng Wang & Zhenhui Kang & Youyong Li & Mingwang Shao & Zhiwei Hu & Qi Shao, 2022. "Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Zhou, Chenyang & Zhang, Chen & Zhang, Teng & Zhang, Jingfeng & Ma, Pengfei & Yu, Yunsong & Zhang, Zaoxiao & Wang, Geoff G.X., 2023. "Single-atom solutions promote carbon dioxide capture," Applied Energy, Elsevier, vol. 332(C).
    6. Hongming Sun & Zhenhua Yan & Caiying Tian & Cha Li & Xin Feng & Rong Huang & Yinghui Lan & Jing Chen & Cheng-Peng Li & Zhihong Zhang & Miao Du, 2022. "Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Weiwei Fu & Jin Wan & Huijuan Zhang & Jian Li & Weigen Chen & Yuke Li & Zaiping Guo & Yu Wang, 2022. "Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Guanhua Ren & Min Zhou & Peijun Hu & Jian-Fu Chen & Haifeng Wang, 2024. "Bubble-water/catalyst triphase interface microenvironment accelerates photocatalytic OER via optimizing semi-hydrophobic OH radical," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Xiaona Zhao & Xiao-Li Zhou & Si-Yu Yang & Yuan Min & Jie-Jie Chen & Xian-Wei Liu, 2022. "Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Gaoxin Lin & Zhuang Zhang & Qiangjian Ju & Tong Wu & Carlo U. Segre & Wei Chen & Hongru Peng & Hui Zhang & Qiunan Liu & Zhi Liu & Yifan Zhang & Shuyi Kong & Yuanlv Mao & Wei Zhao & Kazu Suenaga & Fuqi, 2023. "Bottom-up evolution of perovskite clusters into high-activity rhodium nanoparticles toward alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Gonglei Shao & Changfei Jing & Zhinan Ma & Yuanyuan Li & Weiqi Dang & Dong Guo & Manman Wu & Song Liu & Xu Zhang & Kun He & Yifei Yuan & Jun Luo & Sheng Dai & Jie Xu & Zhen Zhou, 2024. "Dynamic coordination engineering of 2D PhenPtCl2 nanosheets for superior hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Bogdan-Ovidiu Taranu & Eugenia Fagadar-Cosma & Paula Sfirloaga & Maria Poienar, 2023. "Free-Base Porphyrin Aggregates Combined with Nickel Phosphite for Enhanced Alkaline Hydrogen Evolution," Energies, MDPI, vol. 16(3), pages 1-14, January.
    13. Yang, Yang & Li, Jun & Yang, Yingrui & Lan, Linghan & Liu, Run & Fu, Qian & Zhang, Liang & Liao, Qiang & Zhu, Xun, 2022. "Gradient porous electrode-inducing bubble splitting for highly efficient hydrogen evolution," Applied Energy, Elsevier, vol. 307(C).
    14. Kenichi Endo & Masaki Saruyama & Toshiharu Teranishi, 2023. "Location-selective immobilisation of single-atom catalysts on the surface or within the interior of ionic nanocrystals using coordination chemistry," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Jiao Lan & Zengxi Wei & Ying-Rui Lu & DeChao Chen & Shuangliang Zhao & Ting-Shan Chan & Yongwen Tan, 2023. "Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Yiming Zhu & Malte Klingenhof & Chenlong Gao & Toshinari Koketsu & Gregor Weiser & Yecan Pi & Shangheng Liu & Lijun Sui & Jingrong Hou & Jiayi Li & Haomin Jiang & Limin Xu & Wei-Hsiang Huang & Chih-We, 2024. "Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Dong Cao & Haoxiang Xu & Hongliang Li & Chen Feng & Jie Zeng & Daojian Cheng, 2022. "Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Wei Liu & Xiting Wang & Fan Wang & Kaifa Du & Zhaofu Zhang & Yuzheng Guo & Huayi Yin & Dihua Wang, 2021. "A durable and pH-universal self-standing MoC–Mo2C heterojunction electrode for efficient hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29929-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.