IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29010-3.html
   My bibliography  Save this article

Reply to: Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency

Author

Listed:
  • Laibao Liu

    (Institute for Atmospheric and Climate Science, ETH Zurich)

  • Lukas Gudmundsson

    (Institute for Atmospheric and Climate Science, ETH Zurich)

  • Mathias Hauser

    (Institute for Atmospheric and Climate Science, ETH Zurich)

  • Sonia I. Seneviratne

    (Institute for Atmospheric and Climate Science, ETH Zurich)

Abstract

No abstract is available for this item.

Suggested Citation

  • Laibao Liu & Lukas Gudmundsson & Mathias Hauser & Sonia I. Seneviratne, 2022. "Reply to: Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency," Nature Communications, Nature, vol. 13(1), pages 1-2, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29010-3
    DOI: 10.1038/s41467-022-29010-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29010-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29010-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laibao Liu & Lukas Gudmundsson & Mathias Hauser & Dahe Qin & Shuangcheng Li & Sonia I. Seneviratne, 2020. "Soil moisture dominates dryness stress on ecosystem production globally," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Markus Reichstein & Michael Bahn & Philippe Ciais & Dorothea Frank & Miguel D. Mahecha & Sonia I. Seneviratne & Jakob Zscheischler & Christian Beer & Nina Buchmann & David C. Frank & Dario Papale & An, 2013. "Climate extremes and the carbon cycle," Nature, Nature, vol. 500(7462), pages 287-295, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng Fu & Philippe Ciais & I. Colin Prentice & Pierre Gentine & David Makowski & Ana Bastos & Xiangzhong Luo & Julia K. Green & Paul C. Stoy & Hui Yang & Tomohiro Hajima, 2022. "Atmospheric dryness reduces photosynthesis along a large range of soil water deficits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Zbigniew W. Kundzewicz & Adam Choryński & Janusz Olejnik & Hans J. Schellnhuber & Marek Urbaniak & Klaudia Ziemblińska, 2023. "Climate Change Science and Policy—A Guided Tour across the Space of Attitudes and Outcomes," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    3. Wei Wei & Jiping Wang & Libang Ma & Xufeng Wang & Binbin Xie & Junju Zhou & Haoyan Zhang, 2024. "Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data," Land, MDPI, vol. 13(1), pages 1-19, January.
    4. Riao, Dao & Guga, Suri & Bao, Yongbin & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan, 2023. "Non-overlap of suitable areas of agro-climatic resources and main planting areas is the main reason for potato drought disaster in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Patricia Arrogante-Funes & Carlos J. Novillo & Raúl Romero-Calcerrada, 2018. "Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
    6. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    9. Humphreys, John M. & Srygley, Robert B. & Lawton, Douglas & Hudson, Amy R. & Branson, David H., 2022. "Grasshoppers exhibit asynchrony and spatial non-stationarity in response to the El Niño/Southern and Pacific Decadal Oscillations," Ecological Modelling, Elsevier, vol. 471(C).
    10. Jing Wang & Xuesong Wang & Fenli Zheng & Hanmei Wei & Miaomiao Zhao & Jianyu Jiao, 2023. "Ecoenzymatic Stoichiometry Reveals Microbial Carbon and Phosphorus Limitations under Elevated CO 2 , Warming and Drought at Different Winter Wheat Growth Stages," Sustainability, MDPI, vol. 15(11), pages 1-24, June.
    11. Aysan Badraghi & Beáta Novotná & Jan Frouz & Koloman Krištof & Martin Trakovický & Martin Juriga & Branislav Chvila & Leonardo Montagnani, 2023. "Temporal Dynamics of CO 2 Fluxes over a Non-Irrigated Vineyard," Land, MDPI, vol. 12(10), pages 1-16, October.
    12. Yaoping Wang & Jiafu Mao & Forrest M. Hoffman & Céline J. W. Bonfils & Hervé Douville & Mingzhou Jin & Peter E. Thornton & Daniel M. Ricciuto & Xiaoying Shi & Haishan Chen & Stan D. Wullschleger & Shi, 2022. "Quantification of human contribution to soil moisture-based terrestrial aridity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Liu, Sen & Gao, Hongxia & He, Chuan & Liang, Zhiwu, 2019. "Experimental evaluation of highly efficient primary and secondary amines with lower energy by a novel method for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 233, pages 443-452.
    14. Mathilde Chomel & Jocelyn M. Lavallee & Nil Alvarez-Segura & Elizabeth M. Baggs & Tancredi Caruso & Francisco Castro & Mark C. Emmerson & Matthew Magilton & Jennifer M. Rhymes & Franciska T. Vries & D, 2022. "Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).
    16. Li, Bingbing & Yang, Yi & Li, Zhi, 2021. "Combined effects of multiple factors on spatiotemporally varied soil moisture in China’s Loess Plateau," Agricultural Water Management, Elsevier, vol. 258(C).
    17. Ouyang, Lei & Lu, Longwei & Wang, Chunlin & Li, Yanqiong & Wang, Jingyi & Zhao, Xiuhua & Gao, Lei & Zhu, Liwei & Ni, Guangyan & Zhao, Ping, 2022. "A 14-year experiment emphasizes the important role of heat factors in regulating tree transpiration, growth, and water use efficiency of Schima superba in South China," Agricultural Water Management, Elsevier, vol. 273(C).
    18. Haibo Lu & Zhangcai Qin & Shangrong Lin & Xiuzhi Chen & Baozhang Chen & Bin He & Jing Wei & Wenping Yuan, 2022. "Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    19. Arias, María & Notarnicola, Claudia & Campo-Bescós, Miguel Ángel & Arregui, Luis Miguel & Álvarez-Mozos, Jesús, 2023. "Evaluation of soil moisture estimation techniques based on Sentinel-1 observations over wheat fields," Agricultural Water Management, Elsevier, vol. 287(C).
    20. Matheus B. Patrício & Marcos Lado & Tomás de Figueiredo & João C. Azevedo & Paulo A. A. Bueno & Felícia Fonseca, 2023. "Carbon Storage Patterns and Landscape Sustainability in Northeast Portugal: A Digital Mapping Approach," Sustainability, MDPI, vol. 15(24), pages 1-27, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29010-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.