IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22211-2.html
   My bibliography  Save this article

Alternative carbon price trajectories can avoid excessive carbon removal

Author

Listed:
  • Jessica Strefler

    (Member of the Leibniz Association)

  • Elmar Kriegler

    (Member of the Leibniz Association
    Universität Potsdam)

  • Nico Bauer

    (Member of the Leibniz Association)

  • Gunnar Luderer

    (Member of the Leibniz Association
    Technische Universität Berlin)

  • Robert C. Pietzcker

    (Member of the Leibniz Association)

  • Anastasis Giannousakis

    (Member of the Leibniz Association)

  • Ottmar Edenhofer

    (Member of the Leibniz Association
    Technische Universität Berlin
    Mercator Research Institute on Global Commons and Climate Change)

Abstract

The large majority of climate change mitigation scenarios that hold warming below 2 °C show high deployment of carbon dioxide removal (CDR), resulting in a peak-and-decline behavior in global temperature. This is driven by the assumption of an exponentially increasing carbon price trajectory which is perceived to be economically optimal for meeting a carbon budget. However, this optimality relies on the assumption that a finite carbon budget associated with a temperature target is filled up steadily over time. The availability of net carbon removals invalidates this assumption and therefore a different carbon price trajectory should be chosen. We show how the optimal carbon price path for remaining well below 2 °C limits CDR demand and analyze requirements for constructing alternatives, which may be easier to implement in reality. We show that warming can be held at well below 2 °C at much lower long-term economic effort and lower CDR deployment and therefore lower risks if carbon prices are high enough in the beginning to ensure target compliance, but increase at a lower rate after carbon neutrality has been reached.

Suggested Citation

  • Jessica Strefler & Elmar Kriegler & Nico Bauer & Gunnar Luderer & Robert C. Pietzcker & Anastasis Giannousakis & Ottmar Edenhofer, 2021. "Alternative carbon price trajectories can avoid excessive carbon removal," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22211-2
    DOI: 10.1038/s41467-021-22211-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22211-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22211-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Migo-Sumagang, Maria Victoria & Tan, Raymond R. & Aviso, Kathleen B., 2023. "A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates," Energy, Elsevier, vol. 275(C).
    2. Chen Chris Gong & Falko Ueckerdt & Robert Pietzcker & Adrian Odenweller & Wolf-Peter Schill & Martin Kittel & Gunnar Luderer, 2022. "Bidirectional coupling of a long-term integrated assessment model REMIND v3.0.0 with an hourly power sector model DIETER v1.0.2," Papers 2209.02340, arXiv.org, revised Oct 2022.
    3. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    4. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    5. Perpiñán, Jorge & Bailera, Manuel & Peña, Begoña & Romeo, Luis M. & Eveloy, Valerie, 2023. "Technical and economic assessment of iron and steelmaking decarbonization via power to gas and amine scrubbing," Energy, Elsevier, vol. 276(C).
    6. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    7. Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22211-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.