IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09707-8.html
   My bibliography  Save this article

Ultra-high performance wearable thermoelectric coolers with less materials

Author

Listed:
  • Ravi Anant Kishore

    (Center for Energy Harvesting Materials and Systems, Virginia Tech
    15013 Denver West Pkwy)

  • Amin Nozariasbmarz

    (Pennsylvania State University, University Park)

  • Bed Poudel

    (Pennsylvania State University, University Park)

  • Mohan Sanghadasa

    (U.S. Army Combat Capabilities Development Command, Redstone Arsenal)

  • Shashank Priya

    (Center for Energy Harvesting Materials and Systems, Virginia Tech
    Pennsylvania State University, University Park)

Abstract

Thermoelectric coolers are attracting significant attention for replacing age-old cooling and refrigeration devices. Localized cooling by wearable thermoelectric coolers will decrease the usage of traditional systems, thereby reducing global warming and providing savings on energy costs. Since human skin as well as ambient air is a poor conductor of heat, wearable thermoelectric coolers operate under huge thermally resistive environment. The external thermal resistances greatly influence thermoelectric material behavior, device design, and device performance, which presents a fundamental challenge in achieving high efficiency for on-body applications. Here, we examine the combined effect of heat source/sink thermal resistances and thermoelectric material properties on thermoelectric cooler performance. Efficient thermoelectric coolers demonstrated here can cool the human skin up to 8.2 °C below the ambient temperature (170% higher cooling than commercial modules). Cost-benefit analysis shows that cooling over material volume for our optimized thermoelectric cooler is 500% higher than that of the commercial modules.

Suggested Citation

  • Ravi Anant Kishore & Amin Nozariasbmarz & Bed Poudel & Mohan Sanghadasa & Shashank Priya, 2019. "Ultra-high performance wearable thermoelectric coolers with less materials," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09707-8
    DOI: 10.1038/s41467-019-09707-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09707-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09707-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaoli & Jani, Ruchita & Orisakwe, Esther & Johnston, Conrad & Chudzinski, Piotr & Qu, Ming & Norton, Brian & Holmes, Niall & Kohanoff, Jorge & Stella, Lorenzo & Yin, Hongxi & Yazawa, Kazuaki, 2021. "State of the art in composition, fabrication, characterization, and modeling methods of cement-based thermoelectric materials for low-temperature applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2021. "Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system," Energy, Elsevier, vol. 220(C).
    3. Manuela Castañeda & Elkin I. Gutiérrez-Velásquez & Claudio E. Aguilar & Sergio Neves Monteiro & Andrés A. Amell & Henry A. Colorado, 2022. "Sustainability and Circular Economy Perspectives of Materials for Thermoelectric Modules," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    4. Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
    5. Li, Yan, 2022. "A concentrated solar spectrum splitting photovoltaic cell-thermoelectric refrigerators combined system: Definition, combined system properties and performance evaluation," Energy, Elsevier, vol. 238(PC).
    6. Dehai Yu & Zhonghao Wang & Guidong Chi & Qiubo Zhang & Junxian Fu & Maolin Li & Chuanke Liu & Quan Zhou & Zhen Li & Du Chen & Zhenghe Song & Zhizhu He, 2024. "Hydraulic-driven adaptable morphing active-cooling elastomer with bioinspired bicontinuous phases," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Yin, Tao & He, Zhi-Zhu, 2021. "Analytical model-based optimization of the thermoelectric cooler with temperature-dependent materials under different operating conditions," Applied Energy, Elsevier, vol. 299(C).
    8. Zhang, Aibing & Pang, Dandan & Wang, Baolin & Wang, Ji, 2023. "Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting," Energy, Elsevier, vol. 262(PB).
    9. Amin Nozariasbmarz & Daryoosh Vashaee, 2020. "Effect of Microwave Processing and Glass Inclusions on Thermoelectric Properties of P-Type Bismuth Antimony Telluride Alloys for Wearable Applications," Energies, MDPI, vol. 13(17), pages 1-12, September.
    10. Liu, Huicong & Fu, Hailing & Sun, Lining & Lee, Chengkuo & Yeatman, Eric M., 2021. "Hybrid energy harvesting technology: From materials, structural design, system integration to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09707-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.