IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v13y2023i4d10.1038_s41558-023-01604-9.html
   My bibliography  Save this article

Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system

Author

Listed:
  • Jay Fuhrman

    (University of Maryland and Pacific Northwest National Laboratory)

  • Candelaria Bergero

    (University of Maryland and Pacific Northwest National Laboratory)

  • Maridee Weber

    (University of Maryland and Pacific Northwest National Laboratory)

  • Seth Monteith

    (Climate Works Foundation)

  • Frances M. Wang

    (Climate Works Foundation)

  • Andres F. Clarens

    (University of Virginia)

  • Scott C. Doney

    (University of Virginia)

  • William Shobe

    (University of Virginia)

  • Haewon McJeon

    (University of Maryland and Pacific Northwest National Laboratory)

Abstract

Carbon dioxide removal (CDR) is a critical tool in all plans to limit warming to below 1.5 °C, but only a few CDR pathways have been incorporated into integrated assessment models that international climate policy deliberations rely on. A more diverse set of CDR approaches could have important benefits and costs for energy–water–land systems. Here we use an integrated assessment model to assess a complete suite of CDR approaches including bioenergy with carbon capture and storage, afforestation, direct air capture with carbon storage, enhanced weathering, biochar and direct ocean capture with carbon storage. CDR provided by each approach spans three orders of magnitude, with deployment and associated impacts varying between regions. Total removals reach approximately 10 GtCO2 yr−1 globally, largely to offset residual CO2 and non-CO2 emissions, which remain costly to avoid even under scenarios specifically designed to reduce them.

Suggested Citation

  • Jay Fuhrman & Candelaria Bergero & Maridee Weber & Seth Monteith & Frances M. Wang & Andres F. Clarens & Scott C. Doney & William Shobe & Haewon McJeon, 2023. "Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system," Nature Climate Change, Nature, vol. 13(4), pages 341-350, April.
  • Handle: RePEc:nat:natcli:v:13:y:2023:i:4:d:10.1038_s41558-023-01604-9
    DOI: 10.1038/s41558-023-01604-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-023-01604-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-023-01604-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Zhao, Congyu & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2023. "Can low-carbon energy technology lead to energy resource carrying capacity improvement? The case of China," Energy Economics, Elsevier, vol. 127(PA).
    3. Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:13:y:2023:i:4:d:10.1038_s41558-023-01604-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.