IDEAS home Printed from https://ideas.repec.org/a/kap/jtecht/v40y2015i4p663-669.html
   My bibliography  Save this article

Going radical: producing and transferring disruptive innovation

Author

Listed:
  • Massimo Colombo
  • Chiara Franzoni
  • Reinhilde Veugelers

Abstract

Radical science provides new insights and elaborates new concepts that depart significantly from past paradigms. Radical innovation creates entirely new markets or product classes, or leads to major product replacements within existing markets. After providing a brief summary of the scholarly debate concerning the identification and measure of radical science and innovation, we review three new contributions to the topic and suggest areas of future research. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Massimo Colombo & Chiara Franzoni & Reinhilde Veugelers, 2015. "Going radical: producing and transferring disruptive innovation," The Journal of Technology Transfer, Springer, vol. 40(4), pages 663-669, August.
  • Handle: RePEc:kap:jtecht:v:40:y:2015:i:4:p:663-669
    DOI: 10.1007/s10961-014-9361-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10961-014-9361-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10961-014-9361-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murray, Fiona, 2004. "The role of academic inventors in entrepreneurial firms: sharing the laboratory life," Research Policy, Elsevier, vol. 33(4), pages 643-659, May.
    2. Robert D. Dewar & Jane E. Dutton, 1986. "The Adoption of Radical and Incremental Innovations: An Empirical Analysis," Management Science, INFORMS, vol. 32(11), pages 1422-1433, November.
    3. Cohen, Wesley M & Klepper, Steven, 1996. "Firm Size and the Nature of Innovation within Industries: The Case of Process and Product R&D," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 232-243, May.
    4. Richard R. Nelson & Sidney G. Winter, 2002. "Evolutionary Theorizing in Economics," Journal of Economic Perspectives, American Economic Association, vol. 16(2), pages 23-46, Spring.
    5. Klepper, Steven, 1997. "Industry Life Cycles," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 6(1), pages 145-181.
    6. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    7. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    8. Denisa Mindruta, 2013. "Value creation in university-firm research collaborations: A matching approach," Post-Print hal-00818682, HAL.
    9. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67(3), pages 297-297.
    10. Dahlin, Kristina B. & Behrens, Dean M., 2005. "When is an invention really radical?: Defining and measuring technological radicalness," Research Policy, Elsevier, vol. 34(5), pages 717-737, June.
    11. Philippe Mustar, 1997. "How French academics create hi-tech companies: The conditions for success or failure," Science and Public Policy, Oxford University Press, vol. 24(1), pages 37-43, February.
    12. Rebecca Henderson, 1993. "Underinvestment and Incompetence as Responses to Radical Innovation: Evidence from the Photolithographic Alignment Equipment Industry," RAND Journal of Economics, The RAND Corporation, vol. 24(2), pages 248-270, Summer.
    13. Zoltan Acs & David Audretsch, 1990. "Innovation and Small Firms," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011131, December.
    14. Denisa Mindruta, 2013. "Value creation in university-firm research collaborations: A matching approach," Strategic Management Journal, Wiley Blackwell, vol. 34(6), pages 644-665, June.
    15. Kristina Dahlin & Deans M. Behrens, 2005. "When is an invention really radical? Defining and measuring technological radicalness," Post-Print hal-00480416, HAL.
    16. Cédric Schneider & Reinhilde Veugelers, 2010. "On young highly innovative companies: why they matter and how (not) to policy support them," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(4), pages 969-1007, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dirk Crass & Christian Rammer & Birgit Aschhoff, 2019. "Geographical clustering and the effectiveness of public innovation programs," The Journal of Technology Transfer, Springer, vol. 44(6), pages 1784-1815, December.
    2. Holger Graf & Matthias Menter, 2022. "Public research and the quality of inventions: the role and impact of entrepreneurial universities and regional network embeddedness," Small Business Economics, Springer, vol. 58(2), pages 1187-1204, February.
    3. Blume, Maximilian & Oberländer, Anna Maria & Röglinger, Maximilian & Rosemann, Michael & Wyrtki, Katrin, 2020. "Ex ante assessment of disruptive threats: Identifying relevant threats before one is disrupted," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    4. Kolja Hesse, 2020. "Related to whom? The impact of organisational and regional capabilities on radical breakthroughs," Bremen Papers on Economics & Innovation 2005, University of Bremen, Faculty of Business Studies and Economics.
    5. Mario Coccia, 2017. "General purpose technologies in dynamic systems: visual representation and analyses of complex drivers," IRCrES Working Paper 201705, CNR-IRCrES Research Institute on Sustainable Economic Growth - Moncalieri (TO) ITALY - former Institute for Economic Research on Firms and Growth - Torino (TO) ITALY.
    6. Bingqiang Li & Jing Yu & Lei Huang & Jinzhi Li & Changhan Luo, 2021. "Coupling Development of Manufacturing Promotion and Innovation in China," SAGE Open, , vol. 11(4), pages 21582440211, October.
    7. Hu, Qilin & Hughes, Mathew (Mat) & Hughes, Paul, 2022. "Family-unique resources, marketing resources, and family owners’ willingness to pursue radical innovation: A model and test," Journal of Business Research, Elsevier, vol. 146(C), pages 264-276.
    8. Feder, Christophe, 2018. "The effects of disruptive innovations on productivity," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 186-193.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Colombo & Liliana Doganova & Evila Piva & Diego D’Adda & Philippe Mustar, 2015. "Hybrid alliances and radical innovation: the performance implications of integrating exploration and exploitation," The Journal of Technology Transfer, Springer, vol. 40(4), pages 696-722, August.
    2. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    3. Antonio Malva & Stijn Kelchtermans & Bart Leten & Reinhilde Veugelers, 2015. "Basic science as a prescription for breakthrough inventions in the pharmaceutical industry," The Journal of Technology Transfer, Springer, vol. 40(4), pages 670-695, August.
    4. Kathryn Rudie Harrigan & Maria Chiara Guardo & Bo Cowgill, 2017. "Multiplicative-innovation synergies: tests in technological acquisitions," The Journal of Technology Transfer, Springer, vol. 42(5), pages 1212-1233, October.
    5. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    6. Schmidt, Arne & Walter, Sascha G. & Walter, Achim, 2010. "Contingency Factors and the Technology-Performance-Relationship in Start-ups," EconStor Preprints 37082, ZBW - Leibniz Information Centre for Economics.
    7. Michele Cincera & Ela Ince, 2019. "Types of Innovation and Firm performance," Working Papers TIMES² 2019-032, ULB -- Universite Libre de Bruxelles.
    8. William Arant & Dirk Fornahl & Nils Grashof & Kolja Hesse & Cathrin Söllner, 2019. "University-industry collaborations—The key to radical innovations? [Universität-Industrie-Kooperationen – Der Schlüssel zu radikalen Innovationen?]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 39(2), pages 119-141, October.
    9. David Audretsch & Taylor Aldridge, 2014. "The Development of US Policies directed at stimulating Innovation and Entrepreneurship," JRC Research Reports JRC87894, Joint Research Centre.
    10. Kathryn Rudie Harrigan & Maria Chiara Guardo & Elona Marku, 2018. "Patent value and the Tobin’s q ratio in media services," The Journal of Technology Transfer, Springer, vol. 43(1), pages 1-19, February.
    11. Nils Grashof & Alexander Kopka, 2023. "Artificial intelligence and radical innovation: an opportunity for all companies?," Small Business Economics, Springer, vol. 61(2), pages 771-797, August.
    12. Colombo, Massimo G. & Guerini, Massimiliano & Hoisl, Karin & Zeiner, Nico M., 2023. "The dark side of signals: Patents protecting radical inventions and venture capital investments," Research Policy, Elsevier, vol. 52(5).
    13. Sam Arts & Francesco Paolo Appio & Bart Looy, 2013. "Inventions shaping technological trajectories: do existing patent indicators provide a comprehensive picture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 397-419, November.
    14. Avimanyu Datta, 2016. "Antecedents To Radical Innovations: A Longitudinal Look At Firms In The Information Technology Industry By Aggregation Of Patents," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-31, October.
    15. Mary J. Benner, 2010. "Securities Analysts and Incumbent Response to Radical Technological Change: Evidence from Digital Photography and Internet Telephony," Organization Science, INFORMS, vol. 21(1), pages 42-62, February.
    16. Dirk Fornahl & Nils Grashof & Alexander Kopka, 2021. "Do not neglect the periphery?! - the emergence and diffusion of radical innovations," Bremen Papers on Economics & Innovation 2102, University of Bremen, Faculty of Business Studies and Economics.
    17. Jan M. Gerken & Martin G. Moehrle, 2012. "A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 645-670, June.
    18. Hottenrott, Hanna & Lopes-Bento, Cindy, 2014. "(International) R&D collaboration and SMEs: The effectiveness of targeted public R&D support schemes," Research Policy, Elsevier, vol. 43(6), pages 1055-1066.
    19. Dongqing Lyu & Kaile Gong & Xuanmin Ruan & Ying Cheng & Jiang Li, 2021. "Does research collaboration influence the “disruption” of articles? Evidence from neurosciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 287-303, January.
    20. Ron Boschma & Ernest Miguelez & Rosina Moreno & Diego B. Ocampo-Corrales, 2021. "Technological breakthroughs in European regions: the role of related and unrelated combinations," Papers in Evolutionary Economic Geography (PEEG) 2118, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.

    More about this item

    Keywords

    Radical science; Radical innovation; Disruptive change; Measures of radicalness; O31; O32;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jtecht:v:40:y:2015:i:4:p:663-669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.