IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v070i10.html
   My bibliography  Save this article

Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance

Author

Listed:
  • Salmon, Maëlle
  • Schumacher, Dirk
  • Höhle, Michael

Abstract

Public health surveillance aims at lessening disease burden by, e.g., timely recognizing emerging outbreaks in case of infectious diseases. Seen from a statistical perspective, this implies the use of appropriate methods for monitoring time series of aggregated case reports. This paper presents the tools for such automatic aberration detection offered by the R package surveillance. We introduce the functionalities for the visualization, modeling and monitoring of surveillance time series. With respect to modeling we focus on univariate time series modeling based on generalized linear models (GLMs), multivariate GLMs, generalized additive models and generalized additive models for location, shape and scale. Applications of such modeling include illustrating implementational improvements and extensions of the well-known Farrington algorithm, e.g., by spline-modeling or by treating it in a Bayesian context. Furthermore, we look at categorical time series and address overdispersion using beta-binomial or Dirichlet-multinomial modeling. With respect to monitoring we consider detectors based on either a Shewhart-like single timepoint comparison between the observed count and the predictive distribution or by likelihoodratio based cumulative sum methods. Finally, we illustrate how surveillance can support aberration detection in practice by integrating it into the monitoring workflow of a public health institution. Altogether, the present article shows how well surveillance can support automatic aberration detection in a public health surveillance context.

Suggested Citation

  • Salmon, Maëlle & Schumacher, Dirk & Höhle, Michael, 2016. "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i10).
  • Handle: RePEc:jss:jstsof:v:070:i10
    DOI: http://hdl.handle.net/10.18637/jss.v070.i10
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v070i10/v70i10.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v070i10/surveillance_1.12.1.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v070i10/v70i10.R
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v070i10/v70i10-data.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v070.i10?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002. "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
    2. C. P. Farrington & N. J. Andrews & A. D. Beale & M. A. Catchpole, 1996. "A Statistical Algorithm for the Early Detection of Outbreaks of Infectious Disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 547-563, May.
    3. Frisén, Marianne, 2008. "Introduction to financial surveillance," Research Reports 2008:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    4. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    5. Michael Höhle & Matthias an der Heiden, 2014. "Bayesian nowcasting during the STEC O104:H4 outbreak in Germany, 2011," Biometrics, The International Biometric Society, vol. 70(4), pages 993-1002, December.
    6. Zeileis, Achim & Grothendieck, Gabor, 2005. "zoo: S3 Infrastructure for Regular and Irregular Time Series," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i06).
    7. Steffen Unkel & C. Paddy Farrington & Paul H. Garthwaite & Chris Robertson & Nick Andrews, 2012. "Statistical methods for the prospective detection of infectious disease outbreaks: a review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(1), pages 49-82, January.
    8. Christian Sonesson & David Bock, 2003. "A review and discussion of prospective statistical surveillance in public health," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(1), pages 5-21, February.
    9. Sebastian Meyer & Johannes Elias & Michael Höhle, 2012. "A Space–Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence," Biometrics, The International Biometric Society, vol. 68(2), pages 607-616, June.
    10. Höhle, Michael & Paul, Michaela, 2008. "Count data regression charts for the monitoring of surveillance time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4357-4368, May.
    11. Stasinopoulos, D. Mikis & Rigby, Robert A., 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christin Schröder & Luis Alberto Peña Diaz & Anna Maria Rohde & Brar Piening & Seven Johannes Sam Aghdassi & Georg Pilarski & Norbert Thoma & Petra Gastmeier & Rasmus Leistner & Michael Behnke, 2020. "Lean back and wait for the alarm? Testing an automated alarm system for nosocomial outbreaks to provide support for infection control professionals," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doyo G Enki & Paul H Garthwaite & C Paddy Farrington & Angela Noufaily & Nick J Andrews & Andre Charlett, 2016. "Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-25, August.
    2. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.
    3. Angela Noufaily & Paddy Farrington & Paul Garthwaite & Doyo Gragn Enki & Nick Andrews & Andre Charlett, 2016. "Detection of Infectious Disease Outbreaks From Laboratory Data With Reporting Delays," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 488-499, April.
    4. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
    5. Christin Schröder & Luis Alberto Peña Diaz & Anna Maria Rohde & Brar Piening & Seven Johannes Sam Aghdassi & Georg Pilarski & Norbert Thoma & Petra Gastmeier & Rasmus Leistner & Michael Behnke, 2020. "Lean back and wait for the alarm? Testing an automated alarm system for nosocomial outbreaks to provide support for infection control professionals," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    6. Bianca Cox & Françoise Wuillaume & Herman Oyen & Sophie Maes, 2010. "Monitoring of all-cause mortality in Belgium (Be-MOMO): a new and automated system for the early detection and quantification of the mortality impact of public health events," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 55(4), pages 251-259, August.
    7. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    8. Michael Höhle, 2007. "$${\tt surveillance}$$ : An R package for the monitoring of infectious diseases," Computational Statistics, Springer, vol. 22(4), pages 571-582, December.
    9. Chih-Chieh Wu & Chien-Hsiun Chen & Sanjay Shete, 2017. "Assessing current temporal and space-time anomalies of disease incidence," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-10, November.
    10. Assuno, Renato & Correa, Thais, 2009. "Surveillance to detect emerging space-time clusters," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2817-2830, June.
    11. repec:jss:jstsof:34:i02 is not listed on IDEAS
    12. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    13. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    14. Thais Paiva & Renato Assunção & Taynãna Simões, 2015. "Prospective space–time surveillance with cumulative surfaces for geographical identification of the emerging cluster," Computational Statistics, Springer, vol. 30(2), pages 419-440, June.
    15. G. H. Niedrist & R. Psenner & R. Sommaruga, 2018. "Climate warming increases vertical and seasonal water temperature differences and inter-annual variability in a mountain lake," Climatic Change, Springer, vol. 151(3), pages 473-490, December.
    16. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    17. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    18. Maria Lourdes Ordoñez Olivo & Zoltán Lakner, 2023. "Shaping the Knowledge Base of Bioeconomy Sectors Development in Latin American and Caribbean Countries: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    19. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    20. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    21. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:070:i10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.