IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i8p2817-2830.html
   My bibliography  Save this article

Surveillance to detect emerging space-time clusters

Author

Listed:
  • Assuno, Renato
  • Correa, Thais

Abstract

The interest is on monitoring incoming space-time events to detect an emergent space-time cluster as early as possible. Assume that point process events are continuously recorded in space and time. In a certain unknown moment, a small localized cluster of increased intensity starts to emerge. Its location is also unknown. The aim is to let an alarm to go off as soon as possible after its emergence, but avoiding that it goes off unnecessarily. The alarm system should also provide an estimate of the cluster location. In addition to that, the alarm system should take into account the purely spatial and the purely temporal heterogeneity, which are not specified by the user. A space-time surveillance system with these characteristics using a martingale approach to derive the surveillance system properties is proposed. The average run length for the situation when there are clusters present in the data is appropriately defined and the method is illustrated in practice. The algorithm is implemented in a freely available stand-alone software and it is also a feature in a freely available GIS system.

Suggested Citation

  • Assuno, Renato & Correa, Thais, 2009. "Surveillance to detect emerging space-time clusters," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2817-2830, June.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:2817-2830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00492-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marianne Frisén, 2003. "Statistical Surveillance. Optimality and Methods," International Statistical Review, International Statistical Institute, vol. 71(2), pages 403-434, August.
    2. Martin Kulldorff, 2001. "Prospective time periodic geographical disease surveillance using a scan statistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 61-72.
    3. Christian Sonesson & David Bock, 2003. "A review and discussion of prospective statistical surveillance in public health," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(1), pages 5-21, February.
    4. Höhle, Michael & Paul, Michaela, 2008. "Count data regression charts for the monitoring of surveillance time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4357-4368, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.
    2. LeSage, James & Banerjee, Sudipto & Fischer, Manfred M. & Congdon, Peter, 2009. "Spatial statistics: Methods, models & computation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2781-2785, June.
    3. Thais Paiva & Renato Assunção & Taynãna Simões, 2015. "Prospective space–time surveillance with cumulative surfaces for geographical identification of the emerging cluster," Computational Statistics, Springer, vol. 30(2), pages 419-440, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.
    2. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
    3. Bock, David & Pettersson, Kjell, 2007. "Explorative analysis of spatial aspects on the Swedish influenza data," Research Reports 2007:10, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    4. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Similarities and differences between statistical surveillance and certain decision rules in finance," Research Reports 2007:8, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    5. Alexandre Rodrigues & Peter J. Diggle, 2012. "Bayesian Estimation and Prediction for Inhomogeneous Spatiotemporal Log-Gaussian Cox Processes Using Low-Rank Models, With Application to Criminal Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 93-101, March.
    6. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    7. Frisén, Marianne, 2008. "Introduction to financial surveillance," Research Reports 2008:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    8. Chih-Chieh Wu & Chien-Hsiun Chen & Sanjay Shete, 2017. "Assessing current temporal and space-time anomalies of disease incidence," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-10, November.
    9. Pettersson, Kjell, 2008. "On curve estimation under order restrictions," Research Reports 2007:15, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    10. Bock, David, 2007. "Evaluations of likelihood based surveillance of volatility," Research Reports 2007:9, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    11. Toshiro Tango & Kunihiko Takahashi & Kazuaki Kohriyama, 2011. "A Space–Time Scan Statistic for Detecting Emerging Outbreaks," Biometrics, The International Biometric Society, vol. 67(1), pages 106-115, March.
    12. Thais Paiva & Renato Assunção & Taynãna Simões, 2015. "Prospective space–time surveillance with cumulative surfaces for geographical identification of the emerging cluster," Computational Statistics, Springer, vol. 30(2), pages 419-440, June.
    13. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Statistical Surveillance of Epidemics: Peak Detection of Influenza in Sweden," Research Reports 2007:6, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    14. William H. Woodall & J Brooke Marshall & Michael D. Joner Jr & Shannon E Fraker & Abdel‐Salam G Abdel‐Salam, 2008. "On the use and evaluation of prospective scan methods for health‐related surveillance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 223-237, January.
    15. Frisén, Marianne & Andersson, Eva & Pettersson, Kjell, 2008. "Semiparametric estimation of outbreak regression," Research Reports 2007:13, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    16. Salmon, Maëlle & Schumacher, Dirk & Höhle, Michael, 2016. "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i10).
    17. Frisén, Marianne, 2011. "Methods and evaluations for surveillance in industry, business, finance, and public health," Research Reports 2011:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    18. Doyo G Enki & Paul H Garthwaite & C Paddy Farrington & Angela Noufaily & Nick J Andrews & Andre Charlett, 2016. "Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-25, August.
    19. Dong Ding & Axel Gandy & Georg Hahn, 2020. "A simple method for implementing Monte Carlo tests," Computational Statistics, Springer, vol. 35(3), pages 1373-1392, September.
    20. A Bottle & P Aylin, 2011. "Predicting the false alarm rate in multi-institution mortality monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1711-1718, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:2817-2830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.