Advanced Search
MyIDEAS: Login

Moment tests for density forecast evaluation in the presence of parameter estimation uncertainty

Contents:

Author Info

  • Yi‐Ting Chen
Registered author(s):

    Abstract

    Density forecast (DF) possesses appealing properties when it is correctly specified for the true conditional distribution. Although a number of parametric specification tests have been introduced for the DF evaluation (DFE) in the parameter-free context, econometric DF models are typically parameter‐dependent. In this paper, we first use a generalized probability integral transformation‐based moment test to unify these existing tests, and then apply the Newey–Tauchen method (the West–McCracken method) to correct this unified test as a generalized full‐sample (out‐of‐sample) test in the parameter‐dependent context. Unlike the corrected tests, the uncorrected tests could be substantially undersized (oversized) when they are directly applied to the full‐sample (out‐of‐sample) DFE in the presence of parameter estimation uncertainty. We also use a simulation to show the usefulness of the corrected tests in rectifying the size distortion problem, and apply the corrected tests to an empirical study of stock index returns. Copyright (C) 2010 John Wiley & Sons, Ltd.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hdl.handle.net/10.1002/for.1178
    Download Restriction: no

    Bibliographic Info

    Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

    Volume (Year): 30 (2011)
    Issue (Month): 4 (July)
    Pages: 409-450

    as in new window
    Handle: RePEc:jof:jforec:v:30:y:2011:i:4:p:409-450

    Contact details of provider:
    Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/2966

    Related research

    Keywords: density forecast evaluation ; moment test ; parameter estimation uncertainty ; probability integral transformation ;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
    2. Tsyplakov, Alexander, 2014. "Theoretical guidelines for a partially informed forecast examiner," MPRA Paper 55017, University Library of Munich, Germany.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:30:y:2011:i:4:p:409-450. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.