IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v49y2015i3p637-651.html
   My bibliography  Save this article

Energy-Efficient Urban Traffic Management: A Microscopic Simulation-Based Approach

Author

Listed:
  • Carolina Osorio

    (Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Kanchana Nanduri

    (Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

Microscopic urban traffic simulators embed the most detailed traveler behavior and network supply models. These simulators represent individual vehicles and can therefore account for vehicle-specific technologies. They can be coupled with instantaneous fuel consumption models to yield detailed network-wide fuel consumption estimates. Nonetheless, there is currently a lack of computationally efficient optimization techniques that enable the use of these complex integrated models to design sustainable transportation strategies.This paper proposes a methodology that combines a stochastic microscopic traffic simulation model with an instantaneous vehicular fuel consumption model. The combined models are embedded within a simulation-based optimization algorithm and used to address a signal control problem that accounts for both travel times and fuel consumption. The proposed technique couples detailed, stochastic, and computationally inefficient models, yet is an efficient optimization technique. Efficiency is achieved by combining simulated observations with analytical approximations of both travel time and fuel consumption.This methodology is applied to a network in the Swiss city of Lausanne. Within a tight computational budget, the proposed method identifies signal plans with improved travel time and fuel consumption metrics. It outperforms traditional methodologies, which use only simulated information or only analytical information. The case study illustrates the added value of combining simulated and analytical information when performance metrics with high variance, such as fuel consumption, are used. This method enables the use of disaggregate instantaneous vehicle-specific information to inform and improve traffic operations at the network-scale.

Suggested Citation

  • Carolina Osorio & Kanchana Nanduri, 2015. "Energy-Efficient Urban Traffic Management: A Microscopic Simulation-Based Approach," Transportation Science, INFORMS, vol. 49(3), pages 637-651, August.
  • Handle: RePEc:inm:ortrsc:v:49:y:2015:i:3:p:637-651
    DOI: 10.1287/trsc.2014.0554
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2014.0554
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2014.0554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carolina Osorio & Linsen Chong, 2015. "A Computationally Efficient Simulation-Based Optimization Algorithm for Large-Scale Urban Transportation Problems," Transportation Science, INFORMS, vol. 49(3), pages 623-636, August.
    2. Osorio, Carolina & Nanduri, Kanchana, 2015. "Urban transportation emissions mitigation: Coupling high-resolution vehicular emissions and traffic models for traffic signal optimization," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 520-538.
    3. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    4. Carolina Osorio & Michel Bierlaire, 2013. "A Simulation-Based Optimization Framework for Urban Transportation Problems," Operations Research, INFORMS, vol. 61(6), pages 1333-1345, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carolina Osorio & Krishna Kumar Selvam, 2017. "Simulation-Based Optimization: Achieving Computational Efficiency Through the Use of Multiple Simulators," Transportation Science, INFORMS, vol. 51(2), pages 395-411, May.
    2. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    3. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    4. Amirgholy, Mahyar & Gao, H. Oliver, 2023. "Optimal traffic operation for maximum energy efficiency in signal-free urban networks: A macroscopic analytical approach," Applied Energy, Elsevier, vol. 329(C).
    5. Shoki Kosai & Muku Yuasa & Eiji Yamasue, 2020. "Chronological Transition of Relationship between Intracity Lifecycle Transport Energy Efficiency and Population Density," Energies, MDPI, vol. 13(8), pages 1-15, April.
    6. Hu, Lu & Zhao, Bin & Zhu, Juanxiu & Jiang, Yangsheng, 2019. "Two time-varying and state-dependent fluid queuing models for traffic circulation systems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 997-1019.
    7. Carolina Osorio & Jana Yamani, 2017. "Analytical and Scalable Analysis of Transient Tandem Markovian Finite Capacity Queueing Networks," Transportation Science, INFORMS, vol. 51(3), pages 823-840, August.
    8. Zhang, Chao & Osorio, Carolina & Flötteröd, Gunnar, 2017. "Efficient calibration techniques for large-scale traffic simulators," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 214-239.
    9. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    10. Tay, Timothy & Osorio, Carolina, 2022. "Bayesian optimization techniques for high-dimensional simulation-based transportation problems," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 210-243.
    11. Carolina Osorio & Linsen Chong, 2015. "A Computationally Efficient Simulation-Based Optimization Algorithm for Large-Scale Urban Transportation Problems," Transportation Science, INFORMS, vol. 49(3), pages 623-636, August.
    12. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    13. Suhaib Alshayeb & Aleksandar Stevanovic & Nikola Mitrovic & Elio Espino, 2022. "Traffic Signal Optimization to Improve Sustainability: A Literature Review," Energies, MDPI, vol. 15(22), pages 1-24, November.
    14. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.
    15. Xiang He & Xiqun (Michael) Chen & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2017. "Optimal Time-Varying Pricing for Toll Roads Under Multiple Objectives: A Simulation-Based Optimization Approach," Transportation Science, INFORMS, vol. 51(2), pages 412-426, May.
    16. Simone Baldi & Iakovos Michailidis & Vasiliki Ntampasi & Elias Kosmatopoulos & Ioannis Papamichail & Markos Papageorgiou, 2019. "A Simulation-Based Traffic Signal Control for Congested Urban Traffic Networks," Service Science, INFORMS, vol. 53(1), pages 6-20, February.
    17. Mo, Baichuan & Koutsopoulos, Haris N. & Shen, Zuo-Jun Max & Zhao, Jinhua, 2023. "Robust path recommendations during public transit disruptions under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 82-107.
    18. Kim, Nayeon & Montreuil, Benoit & Klibi, Walid & Kholgade, Nitish, 2021. "Hyperconnected urban fulfillment and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    19. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    20. Vladimir NEMTINOV & Yulia NEMTINOVA & Andrey BORISENKO & Vladimir MOKROZUB, 2017. "Information Support Of Decision Making In Urban Passenger Transport Management," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 12(4), pages 83-90, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    2. Flötteröd, Gunnar, 2017. "A search acceleration method for optimization problems with transport simulation constraints," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 239-260.
    3. Carolina Osorio & Jana Yamani, 2017. "Analytical and Scalable Analysis of Transient Tandem Markovian Finite Capacity Queueing Networks," Transportation Science, INFORMS, vol. 51(3), pages 823-840, August.
    4. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    5. Zhang, Chao & Osorio, Carolina & Flötteröd, Gunnar, 2017. "Efficient calibration techniques for large-scale traffic simulators," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 214-239.
    6. Tay, Timothy & Osorio, Carolina, 2022. "Bayesian optimization techniques for high-dimensional simulation-based transportation problems," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 210-243.
    7. Xiao Chen & Carolina Osorio & Bruno Filipe Santos, 2019. "Simulation-Based Travel Time Reliable Signal Control," Transportation Science, INFORMS, vol. 53(2), pages 523-544, March.
    8. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.
    9. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    10. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    11. Osorio, Carolina & Punzo, Vincenzo, 2019. "Efficient calibration of microscopic car-following models for large-scale stochastic network simulators," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 156-173.
    12. Xiqun (Michael) Chen & Xiang He & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2019. "A Bayesian Stochastic Kriging Optimization Model Dealing with Heteroscedastic Simulation Noise for Freeway Traffic Management," Transportation Science, INFORMS, vol. 53(2), pages 545-565, March.
    13. Carolina Osorio & Krishna Kumar Selvam, 2017. "Simulation-Based Optimization: Achieving Computational Efficiency Through the Use of Multiple Simulators," Transportation Science, INFORMS, vol. 51(2), pages 395-411, May.
    14. Suhaib Alshayeb & Aleksandar Stevanovic & Nikola Mitrovic & Elio Espino, 2022. "Traffic Signal Optimization to Improve Sustainability: A Literature Review," Energies, MDPI, vol. 15(22), pages 1-24, November.
    15. Linsen Chong & Carolina Osorio, 2018. "A Simulation-Based Optimization Algorithm for Dynamic Large-Scale Urban Transportation Problems," Transportation Science, INFORMS, vol. 52(3), pages 637-656, June.
    16. Mo, Baichuan & Koutsopoulos, Haris N. & Shen, Zuo-Jun Max & Zhao, Jinhua, 2023. "Robust path recommendations during public transit disruptions under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 82-107.
    17. Osorio, Carolina & Nanduri, Kanchana, 2015. "Urban transportation emissions mitigation: Coupling high-resolution vehicular emissions and traffic models for traffic signal optimization," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 520-538.
    18. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    19. Xiang He & Xiqun (Michael) Chen & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2017. "Optimal Time-Varying Pricing for Toll Roads Under Multiple Objectives: A Simulation-Based Optimization Approach," Transportation Science, INFORMS, vol. 51(2), pages 412-426, May.
    20. David Schmaranzer & Roland Braune & Karl F. Doerner, 2020. "Population-based simulation optimization for urban mass rapid transit networks," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 767-805, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:49:y:2015:i:3:p:637-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.