IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v64y2016i6p1499-1514.html
   My bibliography  Save this article

Indifference-Zone-Free Selection of the Best

Author

Listed:
  • Weiwei Fan

    (Department of Management Science, School of Management, University of Science and Technology of China, Hefei, China)

  • L. Jeff Hong

    (Department of Economics and Finance and Department of Management Sciences, College of Business, City University of Hong Kong, Kowloon Tong, Hong Kong)

  • Barry L. Nelson

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

Abstract

Many procedures have been proposed in the literature to select the simulated alternative with the best mean performance from a finite set of alternatives. Among these procedures, frequentist procedures are typically designed under either the subset-selection (SS) formulation or the indifference-zone (IZ) formulation. Both formulations may encounter problems when the goal is to select the unique best alternative for any configuration of the means. In particular, SS procedures may return a subset that contains more than one alternative, and IZ procedures hinge on the relationship between the chosen IZ parameter and the true mean differences that is unknown to decision makers a priori. In this paper, we propose a new formulation that guarantees to select the unique best alternative with a user-specified probability of correct selection (PCS), as long as the means of alternatives are unique, and we design a class of fully sequential procedures under this formulation. These procedures are parameterized by the PCS value only, and their continuation boundaries are determined based on the Law of the Iterated Logarithm. Furthermore, we show that users can add a stopping criterion to these procedures to convert them into IZ procedures, and we argue that these procedures have several advantages over existing IZ procedures. Lastly, we conduct an extensive numerical study to show the performance of our procedures and compare their performance to existing procedures.

Suggested Citation

  • Weiwei Fan & L. Jeff Hong & Barry L. Nelson, 2016. "Indifference-Zone-Free Selection of the Best," Operations Research, INFORMS, vol. 64(6), pages 1499-1514, December.
  • Handle: RePEc:inm:oropre:v:64:y:2016:i:6:p:1499-1514
    DOI: 10.1287/opre.2016.1530
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2016.1530
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2016.1530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David W. Sullivan & James R. Wilson, 1989. "Corrections to “Restricted Subset Selection Procedures for Simulation”," Operations Research, INFORMS, vol. 37(4), pages 673-673, August.
    2. Stephen E. Chick & Peter Frazier, 2012. "Sequential Sampling with Economics of Selection Procedures," Management Science, INFORMS, vol. 58(3), pages 550-569, March.
    3. L. Jeff Hong, 2006. "Fully sequential indifference‐zone selection procedures with variance‐dependent sampling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(5), pages 464-476, August.
    4. Peter I. Frazier, 2014. "A Fully Sequential Elimination Procedure for Indifference-Zone Ranking and Selection with Tight Bounds on Probability of Correct Selection," Operations Research, INFORMS, vol. 62(4), pages 926-942, August.
    5. David W. Sullivan & James R. Wilson, 1989. "Restricted Subset Selection Procedures for Simulation," Operations Research, INFORMS, vol. 37(1), pages 52-71, February.
    6. Stephen E. Chick & Koichiro Inoue, 2001. "New Two-Stage and Sequential Procedures for Selecting the Best Simulated System," Operations Research, INFORMS, vol. 49(5), pages 732-743, October.
    7. Pichitlamken, Juta & Nelson, Barry L. & Hong, L. Jeff, 2006. "A sequential procedure for neighborhood selection-of-the-best in optimization via simulation," European Journal of Operational Research, Elsevier, vol. 173(1), pages 283-298, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye Chen & Ilya O. Ryzhov, 2023. "Balancing Optimal Large Deviations in Sequential Selection," Management Science, INFORMS, vol. 69(6), pages 3457-3473, June.
    2. Cheng, Zhenxia & Luo, Jun & Wu, Ruijing, 2023. "On the finite-sample statistical validity of adaptive fully sequential procedures," European Journal of Operational Research, Elsevier, vol. 307(1), pages 266-278.
    3. L. Jeff Hong & Guangxin Jiang & Ying Zhong, 2022. "Solving Large-Scale Fixed-Budget Ranking and Selection Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2930-2949, November.
    4. Lee, Mi Lim & Park, Chuljin & Park, Dong Uk, 2018. "Self-adjusting the tolerance level in a fully sequential feasibility check procedure," European Journal of Operational Research, Elsevier, vol. 271(2), pages 733-745.
    5. Michael Macgregor Perry & Hadi El-Amine, 2021. "Computational Efficiency in Multivariate Adversarial Risk Analysis Models," Papers 2110.12572, arXiv.org.
    6. Michael Perry & Hadi El-Amine, 2019. "Computational Efficiency in Multivariate Adversarial Risk Analysis Models," Decision Analysis, INFORMS, vol. 16(4), pages 314-332, December.
    7. Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
    8. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    9. Demet Batur & F. Fred Choobineh, 2021. "Selecting the Best Alternative Based on Its Quantile," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 657-671, May.
    10. Haihui Shen & L. Jeff Hong & Xiaowei Zhang, 2021. "Ranking and Selection with Covariates for Personalized Decision Making," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1500-1519, October.
    11. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haihui Shen & L. Jeff Hong & Xiaowei Zhang, 2021. "Ranking and Selection with Covariates for Personalized Decision Making," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1500-1519, October.
    2. Jun Luo & L. Jeff Hong & Barry L. Nelson & Yang Wu, 2015. "Fully Sequential Procedures for Large-Scale Ranking-and-Selection Problems in Parallel Computing Environments," Operations Research, INFORMS, vol. 63(5), pages 1177-1194, October.
    3. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    4. Batur, D. & Choobineh, F., 2010. "A quantile-based approach to system selection," European Journal of Operational Research, Elsevier, vol. 202(3), pages 764-772, May.
    5. Chao Qin & Daniel Russo, 2024. "Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification," Papers 2402.10592, arXiv.org.
    6. Mohammad H. Almomani & Mahmoud H. Alrefaei, 2016. "Ordinal Optimization with Computing Budget Allocation for Selecting an Optimal Subset," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(02), pages 1-17, April.
    7. Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
    8. Juergen Branke & Wen Zhang, 2019. "Identifying efficient solutions via simulation: myopic multi-objective budget allocation for the bi-objective case," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 831-865, September.
    9. Gongbo Zhang & Yijie Peng & Jianghua Zhang & Enlu Zhou, 2023. "Asymptotically Optimal Sampling Policy for Selecting Top- m Alternatives," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1261-1285, November.
    10. Barry L. Nelson & Julie Swann & David Goldsman & Wheyming Song, 2001. "Simple Procedures for Selecting the Best Simulated System When the Number of Alternatives is Large," Operations Research, INFORMS, vol. 49(6), pages 950-963, December.
    11. Tsai, Shing Chih, 2011. "Selecting the best simulated system with weighted control-variate estimators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 705-717.
    12. Elea McDonnell Feit & Ron Berman, 2019. "Test & Roll: Profit-Maximizing A/B Tests," Marketing Science, INFORMS, vol. 38(6), pages 1038-1058, November.
    13. Hyeong Soo Chang & Jiaqiao Hu, 2012. "On the Probability of Correct Selection in Ordinal Comparison over Dynamic Networks," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 594-604, November.
    14. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    15. David Goldsman & Seong-Hee Kim & William S. Marshall & Barry L. Nelson, 2002. "Ranking and Selection for Steady-State Simulation: Procedures and Perspectives," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 2-19, February.
    16. Vasilii Erokhin & Li Diao & Tianming Gao & Jean-Vasile Andrei & Anna Ivolga & Yuhang Zong, 2021. "The Supply of Calories, Proteins, and Fats in Low-Income Countries: A Four-Decade Retrospective Study," IJERPH, MDPI, vol. 18(14), pages 1-30, July.
    17. Tianming Gao & Vasilii Erokhin, 2020. "Capturing a Complexity of Nutritional, Environmental, and Economic Impacts on Selected Health Parameters in the Russian High North," Sustainability, MDPI, vol. 12(5), pages 1-25, March.
    18. Shing Chih Tsai, 2013. "Rapid Screening Procedures for Zero-One Optimization via Simulation," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 317-331, May.
    19. Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2017. "Customer Acquisition via Display Advertising Using Multi-Armed Bandit Experiments," Marketing Science, INFORMS, vol. 36(4), pages 500-522, July.
    20. Zhongshun Shi & Yijie Peng & Leyuan Shi & Chun-Hung Chen & Michael C. Fu, 2022. "Dynamic Sampling Allocation Under Finite Simulation Budget for Feasibility Determination," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 557-568, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:64:y:2016:i:6:p:1499-1514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.